Skip to main content
Log in

Mathematical Modeling and Optimization of Diesel-Fuel Hydrotreatment

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

The main approaches to developing a reactor block for the hydrodesulfurization of diesel fuels are considered taking into account the reactivity of the organosulfur components in the diesel fuel and the formation of pseudocomponents, which conventionally combine the group of organosulfur components. As the concentration of easily or difficult-to-hydrate sulfur-containing components in the raw material increases, the role of the substance limiting the quality of diesel-fuel purification can go from an easily hydrated to a difficult-to-hydrate pseudocomponent and vice versa. The efficiency of the operation of five variants of the reactor of hydrotreating units is compared. It is shown that, from the standpoint of minimizing catalyst loading, the two-reactor scheme of the hydrotreating process with separate feeding of low-boiling and high-boiling fractions of straight-run diesel fuel to the reactors is optimal. The necessity of determining the temperature boundary of their division, considering the qualitative and quantitative composition of these fractions in terms of organosulfur substances, has been substantiated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Akhmetov, S.A., Tekhnologiya glubokoi pererabotki nefti i gaza (Advanced Oil and Gas Processing Technology), Ufa: Gelem, 2002.

  2. Orochko, D.I., Sulimov, A.D., and Osipov, L.N., Gidrogenizatsionnye protsessy v neftepererabotke (Hydrogenation Processes in Petroleum Refining), Moscow: Khimiya, 1971.

  3. Kaminskii, E.F. and Khavkin, V.A., Glubokaya pererabotka nefti: tekhnologicheskii i ekologocheskii aspekty (Advanced Petroleum Processing: Technological and Environmental Aspects), Moscow: Tekhnika, 2001.

  4. Tanatarov, M.A., Akhmetshina, M.N., Faskhutdinov, R.A., Voloshin, N.D., and Zolotarev, P.A., Tekhnologicheskie raschety ustanovok pererabotki nefti (Engineering Calculations of Petroleum Processing Plants), Moscow: Khimiya, 1987.

  5. Krivtsova, N.I., Ivanchina, E.D., Zanin, I.V., Landl’, Yu.I., and Tataurshchikov, A.A., Kinetic patterns of the conversion of sulfur-containing compounds in the hydrotreating of the diesel fraction of oil, Izv. Tomsk. Politekh. Univ., 2013, no. 3, p. 83.

  6. Song, C., An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel, Catal. Today, 2003, vol. 86, nos. 1–4, pp. 211–263. https://doi.org/10.1016/S0920-5861(03)00412-7

    Article  CAS  Google Scholar 

  7. Gavrilov, N.V., Durov, O.V., Sorokin, Yu.B., and Syrkin, A.M., Determination of the causes of an increase in the sulfur content of the product of hydrotreating the raw materials of reforming, Bashk. Khim. Zh., 2008, vol. 15, no. 2, p. 110.

    CAS  Google Scholar 

  8. Ivanova, L.S. and Ilaldinov, I.Z., Design of an installation for the hydrotreating of diesel fuel, Vestn. Kazan. Tekhnol. Univ., 2013, vol. 16, no. 7, p. 229.

    Google Scholar 

  9. Kanashevich, D.A., Fedushchak, T.A., and Petrenko, T.V., Hydrodesulfurization of the diesel fraction over catalysts obtained using to mechanochemical activation, Izv. Tomsk. Politekh. Univ., 2010, vol. 317, no. 3, p. 58.

    Google Scholar 

  10. Solmanov, P.S., Maximov, N.M., Eremina, Yu.V., Zhilkina, E.O., Dryaglin, Yu.Yu., and Tomina, N.N., Hydrotreating of mixtures of diesel fractions with gasoline and light coker gas oil, Pet. Chem., 2013, vol. 53, no. 3, pp. 177–180. https://doi.org/10.1134/S0965544113030109

    Article  CAS  Google Scholar 

  11. Nagiev, R.S. and Chernov, E.B., Development of up-to-date domestic supports for hydrotreating catalysts based on γ-Al2O3, Bashk. Khim. Zh., 2015, vol. 22, no. 2, p. 38.

    CAS  Google Scholar 

  12. Rudenko, A.V., Increasing the efficiency of the hydrotreating of diesel fuel, Aktual. Probl. Gumanit. Estestv. Nauk, 2014, no. 5-1, p. 25.

  13. Fomichenko, I.V. and Uskach, Ya.L., Improvement of the hydrotreating of diesel fuel, Mezhdunar. Zh. Prikl. Fundam. Issled., 2010, no. 8, p. 145.

  14. Tomina, N.N., Pimerzin, A.A., and Moiseev, I.K., Sulfide catalysts for the hydrotreating of oil fractions, Ross. Khim. Zh., 2008, vol. 52, no. 4, p. 41.

    CAS  Google Scholar 

  15. Krivtsova, N.I., Krivtsov, E.B., Ivanchina, E.D., and Golovko, A.K., Kinetic patterns of the hydrodesulfurization of diesel fractions, Fundam. Issled., 2013, no. 8, p. 640.

  16. Li, H., Yang, J., Weng, H., and Wang, J., Kinetic study on liquid-phase hydrodesulfurization of FCC diesel in tubular reactors, China Pet. Process. Petrochem. Technol., 2015, vol. 17, no. 2, pp. 1–8.

    Google Scholar 

  17. Velikov, S.V., Pokrovskaya, S.V., and Bulavka, Yu.A., Kinetic patterns of the hydrodesulfurization of diesel fuel in an L-24/6 installation, Vestn. Polotsk. Univ., Ser. B: Prom-st., Prikl. Nauki, Khim. Tekhnol., 2014, no. 11, p. 153.

  18. Nakano, K., Ali, S.A., Kim, H.-J., Kim, T., Alhooshani, K., Park, J.-I., and Mochida, I., Deep desulfurization of gas oil over NiMoS catalysis supported on alumina coated USY-zeolite, Fuel Process. Technol., 2013, vol. 116, p. 44.

    Article  CAS  Google Scholar 

  19. Shokri, S., Marvast, M.A., and Tajerian, M., Production of ultra low sulfur diesel: Simulation and software development, Pet. Coal, 2007, vol. 49, no. 2, pp. 48–59.

    CAS  Google Scholar 

  20. Al-Zeghayer, Y.S. and Jibril, B.Y., Kinetics of hydrodesulfurization of dibenzothiophene on sulfided commercial Co-Mo/γ-Al2O3 catalyst, J. Eng. Res., 2006, vol. 3, no. 1, pp. 38–42. https://doi.org/10.24200/tjer.vol3iss1pp38-42

    Article  Google Scholar 

  21. Afanas'eva, Yu.I., Krivtsova, N.I., Ivanchina, E.D., Zanin, I.K., and Tataurshchikov, A.A., Development of a kinetic model for the hydrotreating of diesel fuel, Izv. Tomsk. Politekh. Univ., 2012, no. 3, p. 121.

  22. Tang, X., Li, S., Yue, C., He, J., and Hou, J., Lumping kinetics of hydrodesulfurization and hydrodenitrogenation of the middle distillate from Chinese shale oil, Oil Shale, 2013, vol. 30, no. 4, p. 517.

    Article  CAS  Google Scholar 

  23. Lebedev, B.L., Loginov, S.A., Kogan, O.L., Lobzin, E.V, Kapustin, V.M., Lugovskoi, A.I., and Rudyak, K.B., Investigation of the composition and reactivity of sulfur compounds in hydrodesulfurization processes in an industrial plant, Neftepererab. Neftekhim. (Moscow, Russ. Fed.), 2001, no. 11, p. 62.

  24. Manovyan, A.K., Tekhnologiya pervichnoi pererabotki nefti i prirodnogo gaza (Primary Crude Oil and Natural Gas Processing Technology), Moscow: Khimiya, 2001.

  25. Rudin, M.G., Somov, V.E., and Fomin, A.S., Karmannyi spravochnik neftepererabotchika (Pocket Reference Book for Petroleum Refiners), Moscow: TsNIITEneftekhim, 2004.

  26. Solodova, N.L. and Terent’eva, N.A., Gidroochistka topliv (Hydrotreating of Fuel), Kazan: Kazan. Gos. Tekhnol. Univ., 2008.

  27. Tarakanov, G.V., Nurakhmedova, A.F., Popadin, N.V., and Tarakanov, A.G., RF Patent 2323958, 2008.

  28. Loginov, S.A., Lebedev, B.L., Kapustin, V.M., Lugovskoi, A.I., Kurganov, V.M., and Rudyak, K.B., Development of a new technology for the hydrodesulfurization of diesel fuel, Neftepererab. Neftekhim. (Moscow, Russ. Fed.), 2001, no. 11, p. 67.

  29. Loginov, S.A., Improvement of a technology for industrial production of high-quality diesel fuel, Cand. Sci. (Eng.) Dissertation, Ryazan: Ryazan Petroleum Refinery, 2002.

  30. Samoilov, N.A., Prospects for mathematical modeling and optimization of diesel fuel hydrotreating, Materialy IV Vserossiiskogo (s mezhdunarodnym uchastiem) simpoziuma “Aktual’nye problemy teorii i praktiki geterogennykh katalizatorov i adsorbentov” (Proc. IV All-Russian Symposium with Invited Foreign Speakers “Current Topics in the Theory and Practice of Heterogeneous Catalysts and Adsorbents”), Ivanovo, 2019, p. 379.

  31. Bannatham, P., Teeraboonchaikul, S., Patirupanon, T., Arkardvipart, W., Limtrakul, S., Vatanatham, T., and Ramachandran, P.A., Kinetic evaluation for hydrodesulfurization via lumped model in a trickle-bed reactor, Ind. Eng. Chem. Res., 2016, vol. 55, no. 17, pp. 4878–4886. https://doi.org/10.1021/acs.iecr.6b00382

    Article  CAS  Google Scholar 

  32. Mnushkin, I.A., Samoilov, N.A., and Zhilina, V.A., RF Patent 2691965, 2019.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Samoilov.

Additional information

Translated by D. Kharitonov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samoilov, N.A. Mathematical Modeling and Optimization of Diesel-Fuel Hydrotreatment. Theor Found Chem Eng 55, 91–100 (2021). https://doi.org/10.1134/S0040579520060202

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579520060202

Keywords:

Navigation