Skip to main content
Log in

Dynamic Neural Network Based Sensing and Controlling a Reactive Distillation Column Having Inverse Response

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

The inverse response is one of the obstacles in control studies which leads to instability and causes difficulty in a control system. In this paper, a dynamic neural network based estimator and controller are studied for a reversible butyl acetate esterification reaction in a reactive distillation column showing inverse response. The product composition in the bottoms of the column has been estimated using a recurrent neural network (RNN) based soft sensor and controlled using a model predictive controller (MPC) containing a dynamic neural network based model. To study the closed loop response of the model, disturbances in the form of pseudo random binary sequence have been used for the regulatory response and step disturbances are taken for the servo response. The closed loop results of the MPC are then compared with those of the PI controlled closed loop using the performance index of integral errors. It is observed that the MPC performs better than the PI controller for the process with high nonlinearity and inverse characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. Stephanopoulos, G., Chemical Process Control: An Introduction to Theory and Practice, Englewood Cliffs, N.J.: Prentice-Hall, 1984.

    Google Scholar 

  2. Fernandez de Canete, J., Del Saz-Orozco, P., Garcia-Moral, I., and Gonzalez-Perez, S., Indirect adaptive structure for multivariable neural identification and control of a pilot distillation plant, Appl. Soft Comput., 2012, vol. 12, pp. 2728–2739. https://doi.org/10.1016/j.asoc.2012.03.062

    Article  Google Scholar 

  3. Fernandez de Canete, J., Del Saz-Orozco, P., Gonzalez, S., and Garcia-Moral, I., Dual composition control and soft estimation for a pilot distillation column using a neurogenetic design, Comput. Chem. Eng., 2012, vol. 40, pp. 157–170.

    Article  Google Scholar 

  4. Galicia, H.J., He, Q.P., and Wang, J., Comparison of the performance of a reduced-order dynamic PLS soft sensor with different updating schemes for digester control, Control Eng. Pract., 2012, vol. 20, pp. 747–760. https://doi.org/10.1016/j.conengprac.2012.03.014

    Article  Google Scholar 

  5. Rani, A., Singh, V., and Gupta, J.R.P., Development of soft sensor for neural network based control of distillation column, ISA Trans., 2013, vol. 52, no. 3, pp. 438–449. https://doi.org/10.1016/j.isatra.2012.12.009

    Article  PubMed  Google Scholar 

  6. Gómez-Acata, R.V., Neria-González, M.I., and Aguilar-López, R., Robust software sensor design for the state estimation in a sulfate-reducing bioreactor, Theor. Found. Chem. Eng., 2016, vol. 50, pp. 67–75.

    Article  Google Scholar 

  7. Dong, D., Mcavoy, T.J., and Chang, L.J., Emission monitoring using multivariate soft sensors, Proc. 1995 American Control Conference – ACC’95, 1996, pp. 761–765.

  8. Wang, X., Luo, R., and Shao, H., Designing a soft sensor for a distillation column with the fuzzy distributed radial basis function neural network, Proc. 35th IEEE Conference on Decision and Control (Kobe, Japan, 1996), Piscataway, N.J.: Institute of Electrical and Electronics Engineers (IEEE), 1996, vol. 2, pp. 1714–1719. https://doi.org/10.1109/CDC.1996.572803

  9. Shang, C., Yang, F., Huang, D., and Lyu, W., Data-driven soft sensor development based on deep learning technique, J. Process Control, 2014, vol. 24, pp. 223–233.

    Article  CAS  Google Scholar 

  10. Jalee, E.A. and Aparna, K., Neuro-fuzzy soft sensor estimator for benzene toluene distillation column, Procedia Technol., 2016, vol. 25, pp. 92–99. https://doi.org/10.1016/j.protcy.2016.08.085

    Article  Google Scholar 

  11. Prívara, S., Cigler, J., Váňa, Z., Oldewurtel, F., Sagerschnig, C., and Žáčeková, E., Building modeling as a crucial part for building predictive control, Energy Build., vol. 56, pp. 8–22. https://doi.org/10.1016/j.enbuild.2012.10.024

  12. Rewagad, R.R. and Kiss, A.A., Dynamic optimization of a dividing-wall column using model predictive control, Chem. Eng. Sci., 2012, vol. 68, no. 1, pp. 132–142. https://doi.org/10.1016/j.ces.2011.09.022

    Article  CAS  Google Scholar 

  13. Giwa, A. and Karacan, S., Decoupling PID control of a reactive packed distillation column, ARPN J. Eng. Appl. Sci., 2012, vol. 7, pp. 1263–1272.

    CAS  Google Scholar 

  14. Sharma, N. and Singh, K., Model predictive control and neural network predictive control of TAME reactive distillation column, Chem. Eng. Process., 2012, vol. 59, pp. 9–21. https://doi.org/10.1016/j.cep.2012.05.003

    Article  CAS  Google Scholar 

  15. Martin, P.A., Odloak, D., and Kassab, F., Robust model predictive control of a pilot plant distillation column, Control Eng. Pract., 2013, vol. 21, pp. 231–241.

    Article  Google Scholar 

  16. Huyck, B., De Brabanter, J., De Moor, B., Van Impe, J.F., and Logist, F., Online model predictive control of industrial processes using low level control hardware: A pilot-scale distillation column case study, Control Eng. Pract., 2014, vol. 28, pp. 34–48.

    Article  Google Scholar 

  17. Biegler, L.T., Yang, X., and Fischer, G.A.G., Advances in sensitivity-based nonlinear model predictive control and dynamic real-time optimization, J. Process Control, 2015, vol. 30, pp. 104–116. https://doi.org/10.1016/j.jprocont.2015.02.001

    Article  CAS  Google Scholar 

  18. Mahindrakar, V. and Hahn, J., Model predictive control of reactive distillation for benzene hydrogenation, Control Eng. Pract., 2016, vol. 52, pp. 103–113.

    Article  Google Scholar 

  19. Serrezuela, R.R. and Chavarro, A.F.C., Multivariable control alternatives for the prototype tower distillation and evaporation plant, Int. J. Appl. Eng. Res., 2016, vol. 11, pp. 6039–6043.

    Google Scholar 

  20. Yamashita, A.S., Zanin, A.C., and Odloak, D., Tuning the model predictive control of a crude distillation unit, ISA Trans., 2016, vol. 60, pp. 178–190.

    Article  Google Scholar 

  21. He, Z., Sahraei, M.H., and Ricardez-Sandoval, L.A., Flexible operation and simultaneous scheduling and control of a CO2 capture plant using model predictive control, Int. J. Greenhouse Gas Control, 2016, vol. 48, pp. 300–311.

    Article  CAS  Google Scholar 

  22. Heidarinejad, M., Liu, J., and Christofides, P.D., Economic model predictive control of nonlinear process systems using Lyapunov techniques, AIChE J., 2012, vol. 58, no. 3, pp. 855–870. https://doi.org/10.1002/aic.12672

    Article  CAS  Google Scholar 

  23. Oh, S.K. and Lee, J.M., Iterative learning model predictive control for constrained multivariable control of batch processes, Comput. Chem. Eng., 2016, vol. 93, pp. 284–292.

    Article  CAS  Google Scholar 

  24. Oravec, J., Bakošová, M., Mészáros, A., and Míková, N., Experimental investigation of alternative robust model predictive control of a heat exchanger, Appl. Therm. Eng., 2016, vol. 105, pp. 774–782.

    Article  Google Scholar 

  25. Chien, I.-L., Chung, Y.-C., Chen, B.-S., and Chuang, C.-Y., Simple PID controller tuning method for processes with inverse response plus dead time or large overshoot response plus dead time, Ind. Eng. Chem. Res., 2003, vol. 42, no. 20, pp. 4461–4477.

    Article  CAS  Google Scholar 

  26. Vijaya Raghavan, S.R., Radhakrishnan, T.K., and Srinivasan, K., Soft sensor based composition estimation and controller design for an ideal reactive distillation column, ISA Trans., 2011, vol. 50, pp. 61–70.

    Article  CAS  Google Scholar 

  27. Luyben, W.L., Tuning proportional−integral controllers for processes with both inverse response and deadtime, Ind. Eng. Chem. Res., 2000, vol. 39, no. 4, pp. 973–976. https://doi.org/10.1021/ie9906114

    Article  CAS  Google Scholar 

  28. Sree, R.P. and Chidambaram, M., Simple method of tuning PI controllers for stable inverse response systems, J. Indian Inst. Sci., 2003, vol. 83, pp. 73–85.

    Google Scholar 

  29. Rovaglio, M., Manca, D., Pazzaglia, G., and Serafini, G., Inverse response compensation for the optimal control of municipal incineration plants: Model synthesis and experimental validation, Comput. Chem. Eng., 1996, vol. 20, suppl. 2, pp. S1461–S1467. https://doi.org/10.1016/0098-1354(96)00250-5

    Article  CAS  Google Scholar 

  30. Zhang, W., Xu, X., and Sun, Y., Quantitative performance design for inverse-response processes, Ind. Eng. Chem. Res., 2000, vol. 39, no. 6, pp. 2056–2061.

    Article  CAS  Google Scholar 

  31. Scali, C. and Rachid, A., Analytical design of proportional–integral–derivative controllers for inverse response processes, Ind. Eng. Chem. Res., 1998, vol. 37, no. 4, pp. 1372–1379.

    Article  CAS  Google Scholar 

  32. Skogestad, S., Simple analytic rules for model reduction and PID controller tuning, J. Process Control, 2003, vol. 13, pp. 291–309.

    Article  CAS  Google Scholar 

  33. Alfaro, V.M. and Vilanova, R., Robust tuning of 2DoF five-parameter PID controllers for inverse response controlled processes, J. Process Control, 2013, vol. 23, no. 4, pp. 453–462.

    Article  CAS  Google Scholar 

  34. Martinez, J.A., Arrieta, O., Vilanova, R., Rojas, J.D., Marin, L., and Barbu, M., Model reference PI controller tuning for second order inverse response and dead time processes, Proc. 2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA) (Berlin, 2016), Piscataway, N.J.: Institute of Electrical and Electronics Engineers (IEEE), 2016. https://doi.org/10.1109/ETFA.2016.7733499

  35. Chen, P.-Y., Tang, Y.-C., Zhang, Q.-Z., and Zhang, W.-D., New design method of PID controller for inverse response processes with dead time, Proc. 2005 IEEE International Conference on Industrial Technology (Hong Kong, 2005), Piscataway, N.J.: Institute of Electrical and Electronics Engineers (IEEE), 2005, pp. 1036–1039. https://doi.org/10.1109/ICIT.2005.1600788

  36. Perry’s Chemical Engineers’ Handbook, Green, D.W. and Perry, R.H., Eds., New York: McGraw-Hill, 2007, 8th ed.

    Google Scholar 

  37. Luyben, W.L. and Yu, C.-C., Reactive Distillation Design and Control, New York: Wiley, 2008.

    Book  Google Scholar 

  38. Pascanu, R., Gulcehre, C., Cho, K., and Bengio, Y., How to construct deep recurrent neural networks, Proc. 2nd International Conference on Learning Representations (ICLR 2014), Banff, Canada, 2014.

  39. Häggblom, K.E., Evaluation of experiment designs for MIMO identification by cross-validation, IFAC-PapersOnLine, 2016, vol. 49, no. 7, pp. 308–313. https://doi.org/10.1016/j.ifacol.2016.07.310

    Article  Google Scholar 

  40. Kataria, G. and Singh, K., Recurrent neural network based soft sensor for monitoring and controlling a reactive distillation column, Chem. Prod. Process Model., 2017, vol. 13, no. 3, article no. 20170044. https://doi.org/10.1515/cppm-2017-0044

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kailash Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaurav Kataria, Kailash Singh Dynamic Neural Network Based Sensing and Controlling a Reactive Distillation Column Having Inverse Response. Theor Found Chem Eng 55, 167–179 (2021). https://doi.org/10.1134/S0040579521010085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579521010085

Keywords:

Navigation