Skip to main content
Log in

Analysis and Simulation of the Motion of Particles near the Heat Exchange Surface Immersed in a Fluidized Bed

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

The immersion of a heat exchanger into a fluidized bed changes the hydrodynamic structure of the bed, which, according to this study, has a decisive influence on the heat transfer process. A near-surface zone with a local vertical circulation of particles and a porosity that is higher than that in the rest of the bed volume is formed near the immersed body with an increase in the velocity of the gas blown through the bed. As is shown in this study, the deterioration of the exchange of particles between this zone and the rest of the bed volume leads to a decrease in the intensity of external heat transfer with an increase in the gas velocity. A model is proposed that makes it possible to calculate the width of the near-surface zone and the time of residence of fluidized bed particles in it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Botterill, J.S.M., Fluid-Bed Heat Transfer, London: Academic, 1975.

    Google Scholar 

  2. Kuipers, J.A.M., Prins, W., and van Swaaij, W.P.M. Numerical calculation of wall-to-bed heat-transfer coefficients in gas fluidized beds, AIChE J., 1992, vol. 38, p. 1079.

    Article  CAS  Google Scholar 

  3. Martin, H., Heat transfer between gas fluidized beds of solid particles and the surfaces of immersed heat exchanger elements, part I, Chem. Eng. Process., 1984, vol. 18, no. 3, pp. 157–169. https://doi.org/10.1016/0255-2701(84)80005-7

    Article  CAS  Google Scholar 

  4. Mickley, H.S. and Fairbanks, D.F., Mechanism of heat transfer to fluidized beds, AIChE J., 1955, vol. 1, p. 374.

    Article  CAS  Google Scholar 

  5. Mickley, H.S., Fairbanks, D.F., and Hawthorn, R.D., The relation between the transfer coefficient and thermal fluctuations in fluidized-bed heat transfer, Chem. Eng. Prog., Symp. Ser., 1961, vol. 57, no. 32, p. 51.

    Google Scholar 

  6. Brown, R.C. and Overmann, S.P., The influence of particle thermal time constants on convection coefficients in bubbling fluidized beds, Powder Technol., 1998, vol. 98, p. 13.

    Article  CAS  Google Scholar 

  7. Yusuf, R., Halvorsen, B., and Melaaen, M.C., Eulerian–Eulerian simulation of heat transfer between a gas–solid fluidized bed and an immersed tube-bank with horizontal tubes, Chem. Eng. Sci., 2011, vol. 66, no. 8, pp. 1550–1564. https://doi.org/10.1016/j.ces.2010.12.015

    Article  CAS  Google Scholar 

  8. Armstrong, L.M., Gu, S., and Luo, K.H., Study of wall-to-bed heat transfer in a bubbling fluidised bed using the kinetic theory of granular flow, Int. J. Heat Mass Transfer, 2010, vol. 53, nos. 21–22, pp. 4949–4959. https://doi.org/10.1016/j.ijheatmasstransfer.2010.05.047

    Article  CAS  Google Scholar 

  9. Hou, Q.F., Zhou, Z.Y., and Yu, A.B., Gas-solid flow and heat transfer in fluidized beds with tubes: Effects of material properties and tube array settings, Powder Technol., 2016, vol. 296, p. 59.

    Article  CAS  Google Scholar 

  10. Botterill, J.S.M. and Williams, J.R., The mechanism of heat transfer to gas-fluidized beds, Trans. Inst. Chem. Eng., 1963, vol. 41, p. 217.

    CAS  Google Scholar 

  11. Koppel, L.B., Patel, R.D., and Holmes, J.T., Statistical models for surface renewal in heat and mass transfer: Part 4. Wall to fluidized bed heat transfer coefficients, AIChE J., 1970, vol. 16, p. 464.

    Article  CAS  Google Scholar 

  12. Agrawal, S. and Ziegler, E.N., On the optimum transfer coefficient at an exchange surface in a gas-fluidized bed, Chem. Eng. Sci., 1969, vol. 24, no. 8, pp. 1235–1240. https://doi.org/10.1016/0009-2509(69)85044-X

    Article  CAS  Google Scholar 

  13. Gabor, J.D., Wall-to-bed heat transfer in fluidized beds, AIChE J., 1972, vol. 18, p. 249.

    Article  CAS  Google Scholar 

  14. Baskakov, A.P., Berg, B.V., Vitt, O.K., Filippovsky, N.F., Kirakosyan, V.A., Goldobin, J.M., and Maskaev, V.K., Heat transfer to objects immersed in fluidized beds, Powder Technol., 1973, vol. 8, p. 273.

    Article  CAS  Google Scholar 

  15. Ozkaynak, T.F. and Chen, J.C., Emulsion phase residence time and its use in heat transfer models in fluidized beds, AIChE J., 1980, vol. 26, p. 544.

    Article  CAS  Google Scholar 

  16. Rhodes, M., Mineo, H., and Hirama, T., Particle motion at the wall of a circulating fluidized bed, Powder Technol., 1992, vol. 70, p. 207.

    Article  CAS  Google Scholar 

  17. Molerus, O., Burschka, A., and Dietz, S., Particle migration at solid surfaces and heat transfer in bubbling fluidized beds – 1. Particle migration measurement systems, Chem. Eng. Sci., 1995, vol. 50, p. 871.

    Article  CAS  Google Scholar 

  18. Noymer, P.D. and Glicksman, L.R., Cluster motion and particle-convective heat transfer at the wall of a circulating fluidized bed, Int. J. Heat Mass Transfer, 1998, vol. 41, p. 147.

    Article  CAS  Google Scholar 

  19. Ziegler, E.N., Koppel, L.B., and Brazelton, W.T., Effect of solid thermal properties on heat transfer to gas fluidized beds, Ind. Eng. Chem. Fundam., 1964, vol. 3, p. 324.

    Article  Google Scholar 

  20. Borodulya, V.A., Teplitskii, Yu.S., Ganzha, V.L., and Makarevich, I.I., Modeling of external and interphase heat transfer processes in dispersion media, Teplomassoobmen – Minskii mezhdunarodnyi forum (24–27 maya 1988 g.). Sektsii 4, 5. Teplomassoobmen v dvukhfaznykh i dispersnykh sistemakh: problemnye doklady (Heat and Mass Transfer: The Minsk International Forum (May 24–27, 1988). Sections 4 and 5. Heat and Mass Transfer in Two-Phase and Disperse Systems: Key Lectures) (Minsk, 1988), Minsk: Inst. Teplo- i Massoobmena im. A.V. Lykova Akad. Nauk B. SSR, 1988, p. 122.

  21. Antonishin, N.V. and Lushchikov, V.V., Heat transfer in dispersion media, in Protsessy perenosa v apparatakh s dispersnymi sistemami. Sbornik nauchnykh trudov ITMO im. A.V. Lykova AN BSSR (Transport Processes in Apparatuses with Disperse Systems: A Collection of Scientific Papers of the Luikov Heat and Mass Transfer Institute, Academy of Sciences of the Belorussian SSR), Minsk: Inst. Teplo- i Massoobmena im. A.V. Lykova Akad. Nauk B. SSR, 1986, p. 3.

  22. Borodulya, V.A., Teplitskii, Yu.S., Markevich, I.I., Khassan, A.F., and Eremenko, T.P., Heat transfer between a fluidized bed and the surface, J. Eng. Phys., 1990, vol. 58, no. 4, pp. 446–452. https://doi.org/10.1007/BF00877352

    Article  Google Scholar 

  23. Antonishin, N.V. and Lushchikov, V.V., Degeneration of the effect of the disperse structure of a bed on heat exchange with the surface, Teplomassoobmen – Minskii mezhdunarodnyi forum (24–27 maya 1988 g.). Sektsii 4, 5. Teplomassoobmen v dvukhfaznykh i dispersnykh sistemakh: problemnye doklady (Heat and Mass Transfer: The Minsk International Forum (May 24–27, 1988). Sections 4 and 5. Heat and Mass Transfer in Two-Phase and Disperse Systems: Key Lectures) (Minsk, 1988), Minsk: Inst. Teplo- i Massoobmena im. A.V. Lykova Akad. Nauk B. SSR, 1988, p. 159.

  24. Xavier, A.M. and Davidson, J.F., Heat transfer in fluidized beds: Convective heat transfer in fluidized beds, Fluidization, Davidson, J.F., Clift, R., and Harrison, D., Eds., London: Academic, 1985, p. 437.

    Google Scholar 

  25. Gabor, J.D., Wall-to-bed heat transfer in fluidized and packed beds, Chem. Eng. Prog., Symp. Ser., 1970, vol. 66, no. 105, p. 76.

    CAS  Google Scholar 

  26. Buevich, Yu.A., in Teplomassoobmen-VI. Tezisy dokladov Nauchnoi konferentsii. Problemnye doklady VI Vsesoyuznoi konferentsii po teplomassoobmenu. Chast’ 2 (Heat and Mass Transfer-VI: Abstracts of Papers Presented at the VI All-Russian Conference on Heat and Mass Transfer: Key Lectures: Part 2) (Minsk, 1981), Minsk: Inst. Teplo- i Massoobmena im. A.V. Lykova Akad. Nauk B. SSR, 1981, p. 54.

  27. Korolev, V.N., Structural and gas-dynamic conditions and external heat transfer in fluidized media, Extended Abstract of Doctoral (Eng.) Dissertation, Sverdlovsk: Inst. of Thermal Physics, Academy of Sciences of the USSR, 1988.

  28. Kondukov, N.B., Frenkel’, L.I., Nagornov, S.A., Romanenko, N.Ya., and Tarov, V.P., Some features of hydrodynamics and external heat transfer in a fluidized bed, Dokl. Akad. Nauk SSSR, 1975, vol. 224, no. 5, p. 1138.

    CAS  Google Scholar 

  29. Frenkel', L.I. and Kondukov, N.B., Study of gas velocity profiles in a monodisperse fluidized bed, Khim. Prom-st., 1966, no. 6, p. 418.

  30. Nagornov, S.A., Intensification of heat transfer in inhomogeneous fluidized and vibrocirculating media, Doctoral (Eng.) Dissertation, Tambov: All-Russian Scientific Research Inst. for the Use of Machinery and Oil Products in Agriculture, 2003.

  31. Protod'yakonov, I.O. and Chesnokov, Yu.G., Gidromekhanika psevdoozhizhennogo sloya (Hydromechanics of Fluidized Beds), Leningrad: Khimiya, 1982.

  32. Grace, J.R. and Harrison, D., The influence of bubble shape on the rising velocities of large bubbles, Chem. Eng. Sci., 1967, vol. 22, no. 10, p. 1337.

    Article  CAS  Google Scholar 

  33. Rowe, P.N. and Everett, D.J., Fluidised bed bubbles viewed by X-rays: Part II—The transition from two to three dimensions of undisturbed bubbles, Trans. Inst. Chem. Eng., 1972, vol. 50, no. 1, pp. 49–54.

    CAS  Google Scholar 

  34. Korn, G. and Korn, T., Spravochnik po matematike (Handbook of Mathematics), Moscow: Nauka, 1977.

  35. Selzer, V.W. and Tomson, W.J., Fluidized bed heat transfer: The packet theory revisited, AIChE Symp. Ser., 1977, vol. 73, no. 161, pp. 29–37.

Download references

Funding

This work was supported by the Russian Foundation for Basic Research within project no. 19-58-04004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Yu. Milovanov.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milovanov, O.Y., Is’emin, R.L., Klimov, D.V. et al. Analysis and Simulation of the Motion of Particles near the Heat Exchange Surface Immersed in a Fluidized Bed. Theor Found Chem Eng 55, 41–52 (2021). https://doi.org/10.1134/S0040579520060172

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579520060172

Keywords:

Navigation