Skip to main content
Log in

Water Distillation as a Method for Separation of Hydrogen and Oxygen Isotopes: State of the Art and Prospects

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

Vacuum distillation of water is one of the most environmentally friendly and safe methods for separating the hydrogen and oxygen isotopes. A review of literature data that describe the current state of art in the field of process improvement is presented. The characteristics of contact devices used in distillation were analyzed, and ways to improve their efficiency were shown. Data on new developments aimed at evaluating the efficiency of using salt distillation of water for isotope separation were presented. Some aspects of the use of water distillation for concentration of heavy hydrogen and oxygen isotopes and for the preparation of water with reduced deuterium contents were considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Andreev, B.M., Magomedbekov, E.P., Raitman, A.A., Rozenkevich, M.B., Sakharovsky, Yu.A., and Khoroshilov, A.V., Separation of Isotopes of Biogenic Elements in Two-Phase Systems, Amsterdam: Elsevier, 2007.

    Google Scholar 

  2. Andreev, B.M., Zel’venskii, Ya.D., and Katal’nikov, S.G., Tyazhelye izotopy vodoroda v yadernoi tekhnike (Heavy Hydrogen Isotopes in Nuclear Engineering), Moscow: Energoatomizdat, 1987.

  3. Heavy Water Reactors: Status and Projected Development, Technical Reports Series, no. 407, Vienna: International Atomic Energy Agency, 2002.

  4. Proizvodstvo tyazheloi vody (Heavy Water Production), Zel’venskii, Ya.D., Ed., Moscow: Inostrannaya Literatura, 1961.

  5. Magomedbekov, E.P., Rastunova, I.L., and Rozenkevich, M.B., Current technologies for separating hydrogen isotopes, Vopr. At. Nauki Tekh., Ser.: Materialoved. Nov. Mater., 2014, no. 3 (78), p. 70.

  6. Malkov, M.P., Zel’dovich, A.G., Fradkov, A.B., and Denisov, I.B., Vydelenie deiteriya iz vodoroda metodom glubokogo okhlazhdeniya (Recovery of Deuterium from Hydrogen by Deep Chilling), Moscow, 1960.

  7. Niculescu, A., Constantin, T., Ana, G., and Draghia, M., Dynamic simulation of a multicomponent distillation column for DT separation, Fusion Eng. Des., 2017, vol. 124, p. 752.

    Article  CAS  Google Scholar 

  8. Rozen, A.M., Producing heavy water by ammonia distillation with a heat pump: Startup of an industrial plant, Khim. Prom-st., 1995, no. 4, p. 207.

  9. Gligan, M., Radot, A., Dronca, S., Bidian, C., et al., Installatie experimentala pentru separarea izotopilor oxigenuluiprin distilarea oxidului de azot la temperaturi joase, Rev. Chim. (Bucharest, Rom.), 1997, vol. 48, no. 4, p. 335.

  10. Polevoi, A.S., State of the art in the field of the production of stable oxygen isotopes, Sbornik dokladov VII Vserossiiskoi (Mezhdunarodnoi) nauchnoi konferentsii “Fiziko-khimicheskie protsessy pri selektsii atomov i molekul” (Proc. VII All-Russian (International) Scientific Conference “Physicochemical Processes in the Selection of Atoms and Molecules”) (Zvenigorod, 2002), Moscow: TsNIIAtominform, 2002, p. 280.

  11. Zel’venskii, Ya.D., Recovery and concentration of the heavy isotope of oxygen by the cryogenic distillation of molecular oxygen, Khim. Prom-st., 1999, no. 4, p. 236.

  12. Kambe, T., Kihara, H., Hayashida, S., and Kawakami, H., Development of oxygen-18 separation unit by oxygen distillation, Taiyo Nippon Sanso Tech. Rep., 2004, no. 23, p. 20.

  13. IMV Medical Information Division, PET imaging market summary report 2019. https://imvinfo.com/product/pet-imaging-market-summary-report-2019. Accessed April 20, 2019.

  14. Magomedbekov, E.P., Belkin, D.Yu., Rastunova, I.L., Sazonov, A.B., Selivanenko, I.L., and Kulov, N.N., Simulation and optimization of the deprotiation cascade of a heavy-water moderator, Theor. Found. Chem. Eng., 2017, vol. 51, no. 2, pp. 133–141. https://doi.org/10.1134/S004057951702004X

    Article  CAS  Google Scholar 

  15. Magomedbekov, E.P., Selivanenko, I.L., Kulov, N.N., and Veretennikova, G.V., Conditioning heavy-oxygen water by rectification under vacuum, Theor. Found. Chem. Eng., 2019, vol. 53, no. 5, pp. 719–724. https://doi.org/10.1134/S0040579519050324

    Article  CAS  Google Scholar 

  16. Selivanenko, I.L. and Timakov, A.A., RF Patent 2612667, 2017.

  17. Van Hook, W.A., Vapor pressures of the isotopic waters and ices, J. Phys. Chem., 1968, vol. 72, no. 2, p. 1234.

    Article  CAS  Google Scholar 

  18. Magomedbekov, E.P., Rastunova, I.L., Selivanenko, I.L., and Kulov, N.N., Distribution of heavy hydrogen and oxygen isotopes in water distillation, Theor. Found. Chem. Eng., 2019, vol. 53, no. 2, pp. 151–158. https://doi.org/10.1134/S0040579519020118

    Article  CAS  Google Scholar 

  19. Magomedbekov, E.P., Rastunova, I.L., Selivanenko, I.L., and Sarychev, G.A., Specific features of the distribution of the heavy isotopes of hydrogen and oxygen in water distillation, Khim. Prom-st. Segodnya, 2018, no. 4, p. 40.

  20. Magomedbekov, E.P., Rastunova, I.L., Selivanenko, I.L., and Sarychev, G.A., Specific features of the distribution of the heavy isotopes of hydrogen in the detritiation of light-water wastes by water distillation, Vopr. At. Nauki Tekh., Ser.: Materialoved. Nov. Mater., 2018, no. 4, p. 62.

  21. Muzafarova, A.R. and Emel’yanycheva, E.A., Classification, main requirements, and design features of present-day packed contact devices, Vestn. Tekhnol. Univ., 2016, vol. 19, no. 2, p. 63.

    CAS  Google Scholar 

  22. Farakhov, M.M., Farakhov, T.M., and Laptev, A.G., Hydraulic characteristics of Inzhekhim random packing for gas–liquid contact, Fundam. Issled., 2018, no. 3, p. 24.

  23. Magomedbekov, E.P., Selivanenko, I.L., and Selivanenko, O.I., RF Patent 2641920, 2018.

  24. Magomedbekov, E.P., Selivanenko, I.L., and Selivanenko, O.I., RF Patent 2642572, 2018.

  25. Kagan, A.M., Yudina, L.A., and Pushnov, A.S., Active surface of the elements of irregular heat and mass transfer packings, Theor. Found. Chem. Eng., 2012, vol. 46, no. 2, pp. 165–171. https://doi.org/10.1134/S0040579512020042

    Article  CAS  Google Scholar 

  26. Krylova, A.N. and Basharov, M.M., Comparative mass transfer and hydraulic characteristics of contact devices in packed apparatuses, Izv. Vyssh. Uchebn. Zaved., Probl. Energ., 2010, nos. 11–12, p. 134.

  27. Kagan, A.M. and Pushnov, A.S., Comparative characteristics of industrial irregular packing elements made from a polymeric material for the implementation of absorption and distillation processes, Khim. Prom-st. Segodnya, 2006, no. 11, p. 30.

  28. Farakhov, T.M. and Farakhov, M.M., Generalized hydraulic and mass transfer characteristics of new column packing elements, Khim. Prom-st. Segodnya, 2016, no. 2, p. 50.

  29. Andreev, B.M. and Selivanenko, I.L., Water distillation as a method for separating the isotopes of hydrogen and oxygen, Sbornik dokladov VII Vserossiiskoi (Mezhdunarodnoi) nauchnoi konferentsii “Fiziko-khimicheskie protsessy pri selektsii atomov i molekul” (Proc. VII All-Russian (International) Scientific Conference “Physicochemical Processes in the Selection of Atoms and Molecules”) (Zvenigorod, 2002), Moscow: TsNIIAtominform, 2002, p. 267.

  30. Tkhet, M.A. and Selivanenko, I.L., Efficiency of the separation of hydrogen isotopes by water distillation in columns with film and flooded operating modes of the packing, Khim. Prom-st. Segodnya, 2017, no. 2, p. 3.

  31. Razumovskii, G.N. and Selivanenko, I.L., A scale factor in isotope separation by water distillation in columns with a diameter of up to 300 mm, Usp. Khim. Khim. Tekhnol., 2017, vol. 31, no. 10, p. 94.

    Google Scholar 

  32. Magomedbekov, E.P., Belkin, D.Yu., Selivanenko, I.L., and Rastunova, I.L., Mass-transfer characteristics of spiral prismatic packings in isotope exchange columns of vacuum water distillation, Theor. Found. Chem. Eng., 2016, vol. 50, no. 5, pp. 684–689. https://doi.org/10.1134/S0040579516050328

    Article  CAS  Google Scholar 

  33. Tkhet, M.A., Selivanenko, O.I., Moseev, P.S., Melan’in, F.V., and Selivanenko, I.L., Effect of a method for the startup of a column with regular packing made from a corrosion-resistant net on the efficiency of the separation of a protium–deuterium model mixture by water distillation, Usp. Khim. Khim. Tekhnol., 2014, vol. 28, no. 9, p. 16.

    Google Scholar 

  34. Spiegel, L. and Meier, W., Distillation columns with structured packings in the next decade, Chem. Eng. Res. Des., 2003, vol. 81, p. 39.

    Article  CAS  Google Scholar 

  35. Rejl, F.J., Cmelíková, T., Valenz, L., Haidl, J., Moucha, T., and Kracík, T., Liquid phase axial mixing in distillation column packed with structured packing: Effect on column performance, Chem. Eng. Res. Des., 2019, vol. 148, p. 129.

    Article  CAS  Google Scholar 

  36. Valenz, L., Rejl, F.J., and Linek, V., Effect of gas- and liquid-phase axial mixing on the rate of mass transfer in a pilot-scale distillation column packed with Mellapak 250Y, Ind. Eng. Chem. Res., 2011, vol. 50, no. 4, p. 2262.

    Article  CAS  Google Scholar 

  37. Fukada, S., Miho, Y., and Katayama, K., Tritium separation performance of adsorption/exchange distillation tower packed with structured packing, Fusion Eng. Des., 2018, vol. 133, p. 64.

    Article  CAS  Google Scholar 

  38. Sumchenko, A.S., Bukin, A.N., Marunich, S.A., Pak, Yu.S., Rozenkevich, M.B., Selivanenko, I.L., and Aung, T.M., Influence of packing columns starting modes on effectiveness of processes of water rectification and detritiation of gases by the method of phase isotopic exchange, Theor. Found. Chem. Eng., 2015, vol. 49, no. 3, pp. 252–260. https://doi.org/10.1134/S0040579515030136

    Article  CAS  Google Scholar 

  39. Selivanenko, I.L. and Suvorkin, K.D., RF Patent 2424052, 2011.

  40. Magomedbekov, E.P., Belkin, D.Yu., Selivanenko, I.L., and Rastunova, I.L., Characteristics of the mass transfer of structured rolled ribbon-screw packings in isotope exchange columns during vacuum water distillation, Theor. Found. Chem. Eng., 2016, vol. 50, no. 4, pp. 398–403. https://doi.org/10.1134/S0040579516040400

    Article  CAS  Google Scholar 

  41. Razumovskii, G.N. and Selivanenko, I.L., The use of a compression heat pump for energy recuperation in water distillation under vacuum, Khim. Prom-st. Segodnya, 2017, no. 2, p. 17.

  42. Egorov, A.I. and Tyunis, V.M., Tritium-containing water decontamination by rectification methods, At. Energy (N. Y., NY, U. S.), 2002, vol. 92, no. 8, p. 386.

    CAS  Google Scholar 

  43. Bonnett, I., Busigin, A., and Shapiro, A., Tritium removal and separation technology developments, Fusion Sci. Technol., 2008, vol. 54, no. 1, p. 209.

    Article  CAS  Google Scholar 

  44. Kostylev, A.I., Ledovskoi, I.S., Magomedbekov, E.P., Rozenkevich, M.B., Sakharovsky, Yu.A., Selivanenko, I.L., Sobolev, A.I., and Florya, S.N., Technical and economic characteristics of processes for water detritiation by chemical isotope exchange in the water-hydrogen system, Radiochemistry, 2014, vol. 56, no. 5, p. 529.

    Article  CAS  Google Scholar 

  45. Magomedbekov, E.P., Belkin, D.Yu., Rastunova, I.L., Sazonov, A.B., Selivanenko, I.L., and Kulov, N.N., Water distillation as a method of detritiation of heavy-water moderator, Theor. Found. Chem. Eng., 2017, vol. 51, no. 4, pp. 384–391. https://doi.org/10.1134/S0040579517040212

    Article  CAS  Google Scholar 

  46. Magomedbekov, E.P. and Rastunova, I.L., Handling of tritium-containing aqueous wastes, Khim. Prom-st. Segodnya, 2019, no. 3, p. 62.

  47. Magomedbekov, E.P., Belkin, D.Yu., Rastunova, I.L., Sazonov, A.B., Selivanenko, I.L., and Kulov, N.N., Water distillation as a method of detritiation of heavy-water moderator, Theor. Found. Chem. Eng., 2017, vol. 51, no. 4, pp. 384–391. https://doi.org/10.1134/S0040579517040212

    Article  CAS  Google Scholar 

  48. Gao, Y., Xu, Zh., Wu, K., Wang, X., Yu, Zh., and Fei, W., The steady-state and dynamic simulation of cascade distillation system for the production of oxygen-18 isotope from water, Chin. J. Chem. Eng., 2016, vol. 24, no. 8, p. 979.

    Article  CAS  Google Scholar 

  49. Kostylev, A.I., Mazgunova, V.A., Pokrovskii, Yu.G., and Alyapyshev, M.Yu., RF Patent 2632697, 2017.

  50. Jakli, G. and Van Hook, W.A., Isotope effects in aqueous systems. 12. Thermodynamics of urea-h 4/H2O and urea-d 4/D2O solutions, J. Phys. Chem., 1981, vol. 85, no. 23, pp. 3480–3493. https://doi.org/10.1021/j150623a025

    Article  CAS  Google Scholar 

  51. O’Neil, J.R. and Truesdell, A.H., Oxygen isotope fractionation studies of solute-water interactions, Stable Isotope Geochemistry: A Tribute to Samuel Epstein, The Geochemical Society. Special Publication No. 3, Taylor, H.P., Jr., O’Neil, J.R., and Kaplan, I.R, Eds., Washington, DC: Geochemical Society, 1991, p. 17.

  52. Kulov, N.N., Polkovnichenko, A.V., Lupachev, E.V., Rastunova, I.L., and Magomedbekov, E.P., Fractionation of D/H and 18O/16O water isotopes in a packed distillation column, Theor. Found. Chem. Eng., 2020, vol. 54, no. 3, pp. 389–396. https://doi.org/10.1134/S0040579520030094

    Article  CAS  Google Scholar 

  53. Kulov, N.N., Polkovnichenko, A.V., Lupachev, E.V., Voshkin, A.A., and Magomedbekov, E.P., Distribution of hydrogen isotopes between phases at vapor–liquid equilibrium in aqueous salt solutions, Theor. Found. Chem. Eng., 2020, vol. 54, no. 1, pp. 132–138. https://doi.org/10.1134/S0040579520010108

    Article  CAS  Google Scholar 

  54. Pokalchuk, V.S., Magomedbekov, E.P., Rastunova, I.L., Chebotov, A.Yu., and Kulov, N.N., Estimation of the separation coefficient of oxygen isotopes in aqueous salt solutions, Theor. Found. Chem. Eng., 2020, vol. 54, no. 6, pp. 1127–1130. https://doi.org/10.1134/S0040579520060184

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by the Russian Science Foundation (project no. 18-13-00475).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. P. Magomedbekov.

Additional information

Translated by L. Smolina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magomedbekov, E.P., Rastunova, I.L. & Kulov, N.N. Water Distillation as a Method for Separation of Hydrogen and Oxygen Isotopes: State of the Art and Prospects. Theor Found Chem Eng 55, 1–11 (2021). https://doi.org/10.1134/S0040579521010097

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579521010097

Keywords:

Navigation