Skip to main content
Log in

The implications of two outlet boundary conditions on blood flow simulations in normal aorta of pediatric subjects

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

The blood flow in a normal aorta is simulated directly based on patient-specific data for boundary conditions. This study provides insight into the implications of using two different outlet boundary conditions in accurate modeling of the blood flow based on using pressure or flow rate outlet boundary conditions. Both boundary conditions at the outlet provided similar blood flow characteristics through the main aortic pathway with a reasonable accuracy of 4% relative to the laboratory measurements. Compared to the pressure outlet boundary condition, however, specifying the flow rate at the outlet underestimates pressure in the aortic arch and the flow rates through the outlets of the aortic arch. Additionally, using the flow rate boundary condition leads to an overestimation of peak local Reynolds Number in the aortic arch, and an inaccurate prediction of transition to turbulence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

SIM1:

Simulation 1—using pressure boundary condition

SIM2:

Simulation 2—using flow rate boundary condition

BC(s):

Boundary condition(s)

MRI:

Magnetic resonance imaging

CFD:

Computational fluid dynamics

FSI:

Fluid–structure interaction

\(\eta \) :

Kolmogorov length scale

\(\Delta x\) :

Grid element length

\(q^*\) :

Flow rate normalized by inlet flow rate

\(r^*\) :

Radius normalized by inlet radius

\(u^*\) :

Velocity normalized by average inlet velocity

\(u^+\) :

Velocity normalized by maximum inlet velocity

\({\hat{u}}^*\) :

Phase-averaged velocity normalized by average inlet velocity

\(p^*\) :

Pressure normalized by inlet pressure

\({\hat{P}}\) :

Phase-averaged pressure

\(d^*\) :

Distance along the main aorta pathway normalized by inlet diameter

\(\hbox {Re}_u\) :

Local Reynolds number

\(\alpha \) :

Distance from the center of a cross section to the edge, normalized to range between 0 and 1 in all directions

D :

Diameter of the inlet

References

  1. Al-Manthari, M.S.: Numerical simulation of selected two-dimensional and three-dimensional fluid–structure interaction problems using OpenFOAM technology. Ph.D. Thesis, Swansea University, Swansea, Wales (2018)

  2. Alastruey, J., Xiao, N., Fok, H., Schaeffter, T., Figueroa, C.: On the impact of modelling assumptions in multi-scale, subject-specific models of aortic hemodynamics. J. R. Soc. Interface 13(119), 20160073 (2016)

    Article  Google Scholar 

  3. Armstrong, M., Horner, J., Clark, M., Deegan, M., Hill, T., Keith, C., Mooradian, L.: Evaluating rheological models for human blood using steady state, transient, and oscillatory shear predictions. Rheol. Acta 57(3), 705–728 (2018)

    Article  Google Scholar 

  4. Benim, A., Nahavandi, A., Assmann, A., Schubert, D., Feindt, P., Suh, S.: Simulation of blood flow in human aorta with emphasis on outlet boundary conditions. Appl. Math. Model. 35(7), 3175–3188 (2011)

    Article  MathSciNet  Google Scholar 

  5. Boutouyrie, P., Boumaza, S., Challande, P., Lacolley, P., Laurent, S.: Smooth muscle tone and arterial wall viscosity. Hypertension 32(2), 360–364 (1998)

    Article  Google Scholar 

  6. Crosetto, P., Reyond, P., Deparis, S., Kontaxakis, D., Stergiopulos, N., Quarteroni, A.: Fluid–structure interaction simulation of aortic blood flow. Comput. Fluids 43(1), 46–57 (2011)

    Article  MathSciNet  Google Scholar 

  7. Cuomo, F., Roccabianca, S., et al.: Effects of age-associated regional changes in aortic stiffness on human hemodynamics revealed by computational modeling. PLoS ONE 12(3), 10.1371 (2017)

    Article  Google Scholar 

  8. Doost, S., Zhong, L., Su, B., Morsi, Y.: The numerical analysis of non-Newtonian blood flow in human-specific left ventricle. Comput. Methods Programs Biomed. 127(1), 232–247 (2016)

    Article  Google Scholar 

  9. Durbin, P.A., Reif, B.A.P.: Statistical Theory and Modeling for Turbulent Flows, 2nd edn. Wiley, Chichester (2011)

    MATH  Google Scholar 

  10. Gallo, D., Santis, G., Tresolid, D., Ponzini, R., Massai, D., Deriu, M., Segers, P., Verhegghe, B., Rizzo, G., Morbiducci, U.: On the use of in vivo measured flow rates as boundary conditions for image-based hemodynamic models of the human aorta: Implications for indicators of abnormal flow. Ann. Biomed. Eng. 4(3), 729–741 (2012)

    Article  Google Scholar 

  11. Isnard, R., Pannier, B., Laurent, S., London, G., Diebold, B., Safar, M.: Pulsatile diameter and elastic modulus of the aortic arch in essential hypertension: a noninvasive study. J. Am. Coll. Cardiol. 13(2), 399–405 (1989)

    Article  Google Scholar 

  12. Jia, Y., Punithakumar, K., Noa, M., Hemmati, A.: Turbulent blood flow in the ascending aorta of humans with normal and diseased aortic valves. J. Appl. Mech. 20(1388), 1–16 (2020)

    Google Scholar 

  13. Johnston, B., Johnston, P., Kilpatrick, D.: Non-Newtonian blood flow in human coronary arteries: steady state simulations. J. Biomech. 37(5), 709–720 (2004)

    Article  Google Scholar 

  14. Khan, M., Steinman, D., Valen-Sendstad, K.: Non-Newtonian versus numerical rheology: practical impact of shear-thinning on the prediction of stable and unstable flows in intracranial anuerysms. Int. J. Numer. Methods Biomed. Eng. 33(7), e2836 (2017)

    Article  Google Scholar 

  15. Kim, H., Vignon-Clementel, I., Coogan, J., Figueroa, C., LaDisa, J., Jansen, K., Taylor, C.: Patient-specific modeling of blood flow and pressure in human coronary arteries. Ann. Biomed. Eng. 38(10), 3195–3209 (2010)

    Article  Google Scholar 

  16. Kim, H., Vignon-Clementel, I., Figueroa, C., LaDisa, J., Jansen, K., Feinstein, J., Taylor, C.: On coupling a lumped parameter heart model and a three-dimensional finite element aorta model. Ann. Biomed. Eng. 37(11), 2153–2169 (2009)

    Article  Google Scholar 

  17. Lantz, J., Renner, J., Karlsson, M.: Wall shear stress in a subject specific human aorta—influence of fluid–structure interaction. Int. J. Appl. Mech. 4(4), 759–778 (2011)

    Article  Google Scholar 

  18. Liu, C., Chen, D., Bluemke, D., et al.: Evolution of aortic wall thickness and stiffness with atherosclerosis: long-term follow up from the multi-ethnic study of atherosclerosis (mesa). Hypertension 65(5), 1015–1019 (2016)

    Article  Google Scholar 

  19. Long, J., Undar, A., Manning, K., Deutsch, S.: Viscoelasticity of pediatric blood and its implications for the testing of a pulsatile pediatric blood pump. Am. Soc. Artif. Internal Organs 51(5), 563–566 (2005)

    Article  Google Scholar 

  20. Maivè, M., Garcia, A., Ohayon, J., Martinez, M.: Unsteady blood flow and mass transfer of a human left coronary artery bifurcation: Fsi vs. cfd. Int. Commun. Heat Mass Transf. 39(6), 745–751 (2012)

    Article  Google Scholar 

  21. Manideepa, S.: Generalized Jacobi and Gauss-Seidel method for solving non-square linear systems. On the WWW (2017). arXiv:1706.07640.pdf

  22. Moin, P., Mahesh, K.: Direct numerical simulation: a tool in turbulence research. Annu. Rev. Fluid Mech. 30(1), 539–578 (1998)

    Article  MathSciNet  Google Scholar 

  23. Morbiducci, U., Gallo, D., Massai, D., Consolo, F.: Outflow conditions for image-based hemodynamic models of the carotid bifurcation: implications for indicators of abnormal flow. J. Biomed. Eng. 132(9), 091005 (2010)

    Google Scholar 

  24. Nicosia, M., Kasalko, J., Cochran, R., Einsteina, D., Kunzelman, K.: Biaxial mechanical properties of porcine ascending aortic wall tissue. J. Heart Valve Dis. 11(5), 686–687 (2002)

    Google Scholar 

  25. Numata, S., Itatani, K., et al.: Blood flow analysis of the aortic arch using computational fluid dynamics. Eur. J. Cardiothorac. Surg. 49(6), 1578–1585 (2016)

    Article  Google Scholar 

  26. Olufsen, M., Peskin, S., Kim, W., Pedersen, E., Nadim, A., Larsen, J.: Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions. Ann. Biomed. Eng. 28(11), 1281–1299 (2000)

    Article  Google Scholar 

  27. Philipp, B., Tobias, G., Detlef, K., Andreas, M.: Fast solvers for unsteady thermal fluid structure interaction. On the WWW (2014). arXiv:1407.0893

  28. Pirola, S., Cheng, Z., et al.: On the choice of outlet boundary conditions for patient-specific analysis of aortic flow using computational fluid dynamics. J. Biomech. 60(1), 15–21 (2017)

    Article  Google Scholar 

  29. Razavi, A., Shirani, E., Sadeghi, M.: Numerical simulation of blood pulsatile flow in a stenosed carotid artery using different rheological models. J. Biomech. 44(11), 2021–2030 (2011)

    Article  Google Scholar 

  30. Riley, W., Barnes, R., Evans, G., Burke, G.: Ultrasound measurements of the elastic modulus of the common carotid artery: the aterosclerosis risk in communities (aric) study. Stroke 23(1), 952–956 (1992)

    Article  Google Scholar 

  31. Song, X., Wood, H., Day, S., Olsen, D.: Studies of turbulence models in a computational fluid dynamics model of a blood pump. Artif. Organs 27(10), 935–937 (2003)

    Article  Google Scholar 

  32. Soudah, E., Onate, E., Cervera, M.: Computational fluid dynamics indicators to improve cardiovascular pathologies diagnosis. Monograph CIMNE (2016)

  33. Stein, P., Sabbah, H.: Turbulent blood flow in the ascending aorta of humans with normal and diseased aortic valves. Circ. Res. 39(1), 58–65 (1976)

    Article  Google Scholar 

  34. Tran, A., Burkhardt, B., Tandon, A., et al.: Pediatric heterozygous familial hypercholesterolemia patients have locally increased aortic pulse wave velocity and wall thickness at the aortic root. Int. J. Cardiovasc. Imaging 35(10), 1903–1911 (2019)

    Article  Google Scholar 

  35. Vignon-Clementel, I., Figueroa, C., Jansen, K., Taylor, C.: Outflow boundary conditions for three-dimensional finite element modelling of blood flow and pressure in arteries. Comput. Methods Appl. Mech. Eng. 195(29–32), 3776–3796 (2006)

    Article  Google Scholar 

  36. Vita, F., Tullio, M., Verzicco, R.: Numerical simulation of the non-Newtonian blood flow through a mechanical aortic valve. Theor. Comput. Fluid Dyn. 30(1–2), 129–138 (2015)

    Google Scholar 

  37. Vitanova, K., Cleuziou, J., Pabst, J., Burri, M., Eicken, A., Lange, R.: Recoarctation after Norwood 1 procedure for hypoplastic left heart syndrome: impact of patch material. Ann. Thorac. Surg. 103(2), 617–621 (2017)

    Article  Google Scholar 

  38. Yokawa, K., Tsukube, T., Yagi, N., Hoshino, M., Nakashima, Y., Nakagawa, K., Okita, Y.: Quantitative and dynamic measurements of aortic wall of acute type-a aortic dissection with X-ray phase-contrast tomography. Arterioscelerosis Thrombosis Vasc. Biol. 37(1), A490 (2017)

    Google Scholar 

  39. Zhang, J., Zhang, P., Fraser, K., Griffith, B., Wu, Z.: Comparison of fluid dynamic numerical models for a clinical ventricular assist device and experimental validation. Artif. Organ 37(119), 380–389 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The simulations of blood flow are completed using the resources of Compute Canada. Experiments were performed based on ethics approval at the University of Alberta hospital and Alberta Children Hospital.

Funding

The simulations of blood flow are completed using the resources of Compute Canada. Funding is provided by the Computational Fluid Engineering Laboratory at the University of Alberta.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arman Hemmati.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

Ethics approval was obtained from the University of Alberta hospital and Alberta Children Hospital.

Consent to participate

All authors have given consent for their participation in this research project.

Consent for publication

All authors have reviewed the manuscript and have given consent for its publication.

Availability of data and material

Patient-specific data are not publicly available.

Code availability

All simulations were performed using open-source software OpenFOAM and extend-FOAM 4.0. The specific setup used for this simulation is not publicly available, due to use of patient-specific boundary conditions.

Author’s contributions

YJ is the primary researcher and writer for the simulations presented in this manuscript. AH acts as a direct supervisor and has made large contributions to the writing of the manuscript and manuscript content. KP and MN obtained the patient-specific magnetic resonance imaging data, with ethics approval, and made minor revisions to the writing of the manuscript.

Additional information

Communicated by Jeff D. Eldredge.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, Y., Punithakumar, K., Noga, M. et al. The implications of two outlet boundary conditions on blood flow simulations in normal aorta of pediatric subjects. Theor. Comput. Fluid Dyn. 35, 419–436 (2021). https://doi.org/10.1007/s00162-021-00566-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-021-00566-y

Keywords

Navigation