Skip to main content
Log in

Resonance Scattering of GHz Plane Electromagnetic Waves from Ring Dielectric Linear Structures

  • OPTICS OF LOW-DIMENSIONAL STRUCTURES, MESOSTRUCTURES, AND METAMATERIALS
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

Resonance backscattering at the fundamental magnetic mode and the wave properties of linear structures consisting of subwave dielectric elements in the form of planar thin rings excited by the displacement currents of an incident microwave-range plane electromagnetic wave have been investigated. It is shown that the magnetic field at the main resonance frequency for a single ring is concentrated inside the ring and in the near-field zone, whereas for structures consisting of two or more rings the magnetic field is also registered in the far-field zone. The main magnetic resonances measured in the spectrum of electromagnetic fields for one and two planar rings coincide with the calculated resonance frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. V. G. Veselago, Phys. Usp. 54, 1161 (2011). https://doi.org/10.3367/UFNe.0181.201111h.1201

    Article  ADS  Google Scholar 

  2. I. B. Vendik and O. G. Vendik, Tech. Phys. 58, 1 (2013). https://doi.org/10.1134/S1063784213010234

    Article  Google Scholar 

  3. Q. Zhao, Y. Meng, B. Du, L. Kang, H. Zhao, Q. Xie, B. Li, X. Zhang, J. Zhou, and L. Li, Appl. Phys. Lett. 92, 051106 (2008). https://doi.org/10.1063/1.2841811

    Article  ADS  Google Scholar 

  4. M. F. Bulatov and D. V. Churikov, J. Surf. Invest.: X‑ray, Synchrotron Neutron Tech. 13, 206 (2019). https://doi.org/10.1134/S1027451019020046

    Article  Google Scholar 

  5. S. Jahani and Z. Jacob, Nat. Nanotechnol. 11, 23 (2016). https://doi.org/10.1038/nnano.2015.304

    Article  ADS  Google Scholar 

  6. M. Verplanken and J. van Bladel, IEEE Trans. Microwave Theory Technol. 24, 108 (1976).

    Article  ADS  Google Scholar 

  7. A. E. Miroshnichenko, A. I. Kuznetsov, L. Wei, Y. Fu, D. Neshev, and B. S. Luk’yanchuk, Opt. Photon. News 23 (12), 35 (2012). https://doi.org/10.1364/OPN.23.12.000035

    Article  ADS  Google Scholar 

  8. A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, Science (Washington, DC, U. S.) 354, 2472 (2016). https://doi.org/10.1126/science.aag2472

    Article  Google Scholar 

  9. L. Jelinek and R. Marques, J. Phys.: Condens. Matter 22, 025902 (2010). https://doi.org/10.1088/0953-8984/22/2/025902

    Article  ADS  Google Scholar 

  10. A. B. Shvartsburg, V. Ya. Pecherkin, L. M. Vasilyak, S. P. Vetchinin, and V. E. Fortov, Sci. Rep. 7, 2180 (2017). https://doi.org/10.1038/s41598-017-02310-1

    Article  ADS  Google Scholar 

  11. D. Pozar, Microwave Engineering, 4th ed. (Wiley, Hoboken, 2011).

    Google Scholar 

  12. I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, ACS Nano 7, 7824 (2013). https://doi.org/10.1021/nn402736f

    Article  Google Scholar 

  13. P. Kapitanova, V. Ternovski, A. Miroshnichenko, N. Pavlov, P. Belov, Y. Kivshar, and M. Tribelsky, Sci. Rep. 7, 731 (2017). https://doi.org/10.1038/s41598-017-00724-5

    Article  ADS  Google Scholar 

  14. P. D. Terekhov, A. B. Evlyukhin, A. S. Shalin, and A. Karabchevsky, J. Appl. Phys. 125, 173108 (2018). https://doi.org/10.1063/1.5094162

    Article  ADS  Google Scholar 

  15. J. M. Geffrin, B. Garcıa-Camara, R. Gomez-Medina, P. Albella, L. S. Froufe-Perez, C. Eyraud, A. Litman, R. Vaillon, F. Gonzalez, M. Nieto-Vesperinas, J. J. Saenz, and F. Moreno, Nat. Commun. 3, 1171 (2012). https://doi.org/10.1038/ncomms2167

    Article  ADS  Google Scholar 

  16. Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, Nat. Commun. 5, 5753 (2014). https://doi.org/10.1038/ncomms6753

    Article  ADS  Google Scholar 

  17. A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. B. Zhang, and B. Lukyanchuk, Sci. Rep. 2, 492 (2012). https://doi.org/10.1038/srep00492

    Article  ADS  Google Scholar 

  18. A. E. Krasnok, I. S. Maksymov, A. I. Denisyuk, P. A. Belov, A. E. Miroshnichenko, C. R. Simovski, and Yu. S. Kivshar, Phys. Usp. 56, 539 (2013). https://doi.org/10.3367/UFNe.0183.201306a.0561

    Article  ADS  Google Scholar 

  19. A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D. Y. Choi, D. N. Neshev, Y. Kivshar, and H. Altug, Science (Washington, DC, U. S.) 360, 1105 (2018). https://doi.org/10.1126/science.aas9768

    Article  ADS  Google Scholar 

  20. I. Liberal, I. Ederra, Ramón Gonzalo, and R. W. Ziolkowski, Phys. Rev. Appl. 1, 044002 (2014). https://doi.org/10.1103/PhysRevApplied.1.044002

    Article  ADS  Google Scholar 

  21. A. B. Shvartsburg, V. Ya. Pecherkin, S. Jimenez, L. M. Vasilyak, S. P. Vetchinin, L. Vazquez, and V. E. Fortov, J. Phys. D: Appl. Phys. 51, 475001 (2018). https://doi.org/10.1088/1361-6463/aae1eb

    Article  ADS  Google Scholar 

  22. A. B. Shvartsburg, V. Ya. Pecherkin, L. M. Vasilyak, S. P. Vetchinin, and V. E. Fortov, Phys. Usp. 61, 698 (2018). https://doi.org/10.3367/UFNe.2017.03.038139

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported by the Ministry of Science and Higher Education of the Russian Federation within the Federal Target Program “Research and Development in the Priority Fields of the Scientific and Technological Complex of the Russian Federation in 2014–2020” (agreement no. 075-15-2019-1299; unique identifier of the agreement RFMEFI60718X0206).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Ya. Pecherkin.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by A. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shvartsburg, A.B., Vasilyak, L.M., Vetchinin, S.P. et al. Resonance Scattering of GHz Plane Electromagnetic Waves from Ring Dielectric Linear Structures. Opt. Spectrosc. 129, 252–255 (2021). https://doi.org/10.1134/S0030400X21020132

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X21020132

Keywords:

Navigation