Skip to main content
Log in

Impact of the nature of fibers on the physicomechanical behavior and durability of cement matrices

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Civil Engineering Aims and scope Submit manuscript

Abstract

In this paper, the strength of concrete prismatic and cylinders concrete and reinforced with steel and polypropylene fibers are presented. Also, hybrid fibers with crimped steel and polypropylene were used in concrete matrix to study its improvements in strength and durability properties. The steel, polypropylene, and hybrid consisting of polypropylene and steel (crimped) fibers of various proportions by volume of cement were used in concrete mixes. Besides cubes, cylinders of 160 mm diameter X 320 mm high of concrete were cast with steel fiber, polypropylene fiber, and hybrid fiber, respectively, by volume of cement. The water absorption test was conducted on 28 and 90 days, and the test results show that the addition of steel and polypropylene fibers to concrete exhibits better performance. The test results show that use of steel fiber-reinforced concrete improves compressive strength and split tensile strength. The durability of such concrete is also improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  • Aghabaglou AM, Ozen S, Altun MG (2018) Durability performance and dimensional stability of polypropylene fiber reinforced concrete. J Green Build 13(2):20–41. https://doi.org/10.3992/1943-4618.13.2.20

    Article  Google Scholar 

  • Ahad A, Khan ZR, Srivastava SD (2015) Application of steel fiber in increasing the strength, life-period and reducing overall cost of road construction by minimizing the thickness of pavement. World J Eng Technol 3:240–250. https://doi.org/10.4236/wjet.34025

    Article  Google Scholar 

  • Aslani F, Samali B (2013) High strength polypropylene fiber reinforcement concrete at high temperature, Centre for Built infrastructure research. School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo

    Google Scholar 

  • Behbahani HP, Nematollahi B, Farasatpour M (2011) Steel fiber reinforced concrete: a review. Conference: Proceedings of the International Conference on Structural Engineering Construction and Management, Kandy, Sri Lanka

  • Bentalha née malou malika (2007) Influence de l’introduction de Fibres Métalliques sur le Comportement Différé d’une Matrice Cimentaire. Thèse de doctorat, université de Constantine, Algérie, Caractérisation-Comportement monotone-Microstructure

    Google Scholar 

  • Biaoli L, Yuchuanshi Y, Qiliu C (2018) Effects of fiber type, volume fraction and aspect ratio on the flexural and acoustic emission behaviors of steel fiber reinforced concrete. Constr Build Mater 181:474–486. https://doi.org/10.1016/j.conbuildmat.2018.06.065

    Article  Google Scholar 

  • Bidossessi Amen., Novembre (2010). Prosper PLIYA. Contribution des fibres de polypropylène et métalliques à l’amélioration du comportement du béton soumis à une température élevée, Thèse de doctorat de l’université de Cergy-Pantoise, France, p. 260

  • Chaboki HR, Ghalehnovi M, Karimipour A, Brito J (2018) Experimental study on the flexural behaviour and ductility ratio of steel fibers coarse recycled aggregate concrete beams. Constr Build Mater 186:400–422. https://doi.org/10.1016/j.conbuildmat.2018.07.132

    Article  Google Scholar 

  • Chen B, Liu J (2004) Residual strength of hybrid – fiber reinforced high strength concrete after exposure to high temperature. Cem Concr Res 34:1065–1069

    Article  Google Scholar 

  • Das CS, Dey T, Dandapat R, Mukharjee BB, Jitendrakumar (2018) Performance evaluation of polypropylene fiber reinforced recycled aggregate concrete. Constr Build Mater 189:649–659. https://doi.org/10.1016/j.conbuildmat.2018.09.036

    Article  Google Scholar 

  • Dropik MJ, Johnson DH, Roth DE (2002) International ANSYS Conference. Penn State-Erie, Erie, PA, USA

    Google Scholar 

  • Dropik, MJ, David HJ, David ER. (2002). Developing an ANSYS creep model for polypropylene from experimental data. In Proceedings of International ANSYS Conference. Vol. 161

  • Duane O, Naaman AE (1986) Steel fiber reinforced concrete under static and cyclic compressive loading. In: RILEM symposium FRC 86, developments in fiber reinforced cement and concrete, Vol 1. paper 3.10

  • Edgington J., Hannant D.J., Williams R.I.T, (1974.)Steel fiber reinforced concrete. G.B. Building. Elhachem M., (1990). Etude de l’influence de la fibre de fonte amorphe sur le retrait et le fluage du béton, Thèse Doct., Ecole Centrale Paris, p. 165

  • Elhachem M., (1990). Etude de l’influence de la fibre de fonte amorphe sur le retrait et le fluage du béton, Thèse Doct., Ecole Centrale Paris, p. 165

  • French Standard, P18-407., 1981a. Concrete-bending test, AFNOR Publishing, Paris 1981

  • French Standard, P18-406., 1981b. Concrete-compression test, Editions AFNOR, Paris 1981

  • Guermiti Laid., May 2013. Contribution to the improvement of certain characteristics of concrete dune sand corrected and reinforced by metallic fi bers, Magistery thesis. https://tinyurl.com/y7j9o62o.

  • Hacène H (1993) Contribution to the study of the reinforced concrete behavior of metallic fibers subjected to the action of the maintained and cyclic loads, Thesis of Doctorate: INSA of Lyon, p. 244

  • Imbabi MS, Carrigan C, McKenna S (2013) Trends and developments in green cement and concrete technology. Int J Sustain Built Environ 1:194–216

    Article  Google Scholar 

  • Kumar N (2015) A review study on use of steel fiber as reinforcement material with concrete. J Mech Civil Eng 12(4):95–98. https://doi.org/10.9790/1684-12439598

    Article  Google Scholar 

  • Liu X, Chia KS, Zhang MH (2010) Water absorption, permeability, and resistance to chloride ion penetration of lightweight aggregate concrete, Construction and Building Materials, Vol. 25, 335–343. J Wuhan Univ Technol 22:52–55

    Google Scholar 

  • McMahon JA, Birely AC (2018) Service performance of steel fiber reinforced concrete (SFRC) slabs. Eng Struct 168(58–68):2018. https://doi.org/10.1016/j.engstruct.04.067

    Article  Google Scholar 

  • Melais S (2015) Comportement mécanique des plaques en béton de sable renforcé de fibres métalliques. Annales de bâtiments et travaux publics, issue n°2/2011, pp. 17–22. Laboratoire Matériaux, Géomatériaux et Environnement, Département de Génie Civil, Université Badji-Mokhtar Annaba, BP 12, 23000 Annaba, Algérie

  • Miloud B (2005) Permeability and porosity characteristics of steel fiber reinforced concrete. Asian J Civil Eng 6:317–330

    Google Scholar 

  • Mohod MV (2015) Performance of steel fiber reinforced concrete. J Mech Civil Eng 12(1):28–36. https://doi.org/10.9790/1684-12112836

    Article  Google Scholar 

  • NF P15-433 M (1994) Methods of testing cements-determination of shrinkage and swelling. European committee for standardization (CEN), AFNOR, Paris, France

  • NF P18-540 (1997) Aggregates "Definitions, Conformity, Specifications", published by AFNOR in 1997, replaces experimental standards pp 18–101, of December 1990 and P 18-541 of May 1994

  • Neves RD, Fernandes de Almeida JC (2005) Compressive behaviour of steel fiber reinforced concrete. Struct Concr 6(1):1–8

  • Patel PA (2010) Improvement of shear strength using triangular shape fiber in concrete. NBM & CW, a civil engg magazine

  • Poon S, Shui ZH, Lam L (2004) Compressive behavior of fiber reinforced high-performance concrete subjected to elevated temperature. Cem Concr Res 34:2215–2222

    Article  Google Scholar 

  • Pradeep AR, Basava MI, Gowda L (2016) A case study on strength properties of partially replaced recycled aggregate and steel fibers to a nominal concrete. J Mech Civil Eng 13(3):52–58. https://doi.org/10.9790/1684-1303075258

    Article  Google Scholar 

  • Sharath MY, Sanjith J, Manjunath HR (2017) Experimental investigation on steel fiber reinforced concrete. Int J Sci Dev Res 2(6):204–210

    Google Scholar 

  • Thirumurugan S, SivaKumar A (2013) Compressive strength index of crimped polypropylene fibers in high strength cementitious matrix. World Appl Sci J 24(6):698–702

    Google Scholar 

  • Varona FB, Baeza FJ, Bru D, Ivorra S (2018) Evolution of the bond strength between reinforcing steel and fiber reinforced concrete after high temperature exposure. J Constr Build Mater 176:359–370. https://doi.org/10.1016/j.conbuildmat.2018.05.065

    Article  Google Scholar 

  • Wu, Y. & Wenhui, Z. (2006). Effect of polypropylene fibers on the long-term tensile strength of concrete

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wafaa Aboutair.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aboutair, W., Chaid, R. & Perrot, A. Impact of the nature of fibers on the physicomechanical behavior and durability of cement matrices. Iran J Sci Technol Trans Civ Eng 45, 1467–1482 (2021). https://doi.org/10.1007/s40996-021-00596-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40996-021-00596-w

Keywords

Navigation