Skip to main content
Log in

Evidence of an antidepressant-like effect of xylopic acid mediated by serotonergic mechanisms

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Background

Depression causes significant debilitating symptoms and economic burden. Current management is challenged by slow onset of action and modest efficacies of antidepressants; thus, the search for newer antidepressants remains relevant. We evaluated the antidepressant effects of a kaurene diterpene, xylopic acid (XA), in zebrafish and mouse models.

Methods

The chronic unpredictable stress (CUS) protocol in zebrafish and the tail suspension test (TST), forced swim test (FST), lipopolysaccharide-induced depression-like behaviour test (LID) and repeated open space swimming test (OSST) in mice were used. We further examined the impact of depleting monoamines on XA’s antidepressant effects. The contribution of glutamatergic and nitrergic pathways on the antidepressant effect of XA in mice and XA’s effects on 5-HT receptors and monoamine oxidase (MAO) enzymes were also evaluated. Finally, XA’s influence on neuroprotection was evaluated by measuring BDNF and oxidative stress enzymes in whole brain. XA doses (1–10 μM) in zebrafish and (10, 30, 100 mg kg−1) in mice exerted potent antidepressant-like potential in FST, TST, LID and showed fast-onset antidepressant-like property in the OSST.

Results

The antidepressant-like properties in mice were reversed by blocking synthesis/release of serotonin but not noradrenaline using p-chlorophenylalanine and α-methyl-p-tyrosine, respectively. This antidepressant-like effect was potentiated by d-cycloserine and Nω-Nitro-l-arginine methyl ester (l-NAME) but not by d-serine and L-arginine. XA also evoked partial agonist-like effects on 5-hydroxytrptamine receptors on the rat fundus but it did not have MAO inhibition effect. It also increased BDNF, glutathione and antioxidant enzymes.

Conclusion

Therefore, xylopic acid possesses antidepressant-like effects largely mediated by serotonergic and neuroprotective mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adaramoye OA, Adedara IA, Popoola B, Farombi EO (2010) Extract of Xylopia aethiopica (Annonaceae) protects against gamma-radiation-induced testicular damage in Wistar rats. J Basic Clin Physiol Pharmacol 21(4):295–314

    Article  PubMed  Google Scholar 

  • Adeoluwa AO, Aderibigbe OA, Agboola IO, Olonode TE, Ben-Azu B (2019) Butanol fraction of Olax subscorpioidea produces antidepressant effect: evidence for the involvement of monoaminergic neurotransmission. Drug Res 69(01):53–60

    Article  CAS  Google Scholar 

  • Allison DJ, Ditor DS (2014) The common inflammatory etiology of depression and cognitive impairment: a therapeutic target. J Neuroinflammation 11(1):151

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ameyaw EO, Woode E, Boakye-Gyasi E, Abotsi WK, Kyekyeku JO, Adosraku RK (2014) Anti-allodynic and anti-hyperalgesic effects of an ethanolic extract and xylopic acid from the fruits of Xylopia aethiopica in murine models of neuropathic pain. Pharm Res 6(2):172–179

    Google Scholar 

  • Amodeo G, Trusso MA, Fagiolini A (2017) Depression and inflammation: disentangling a clear yet complex and multifaceted link. Neuropsychiatry 7(4):448–457

    Google Scholar 

  • Association AP (2015) Depressive disorders: DSM-5® Selections. edn. American Psychiatric Pub

  • Autry AE, Monteggia LM (2012) Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacol Rev 64(2):238–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barlow R (1961) Effects on amine oxidase of substances which antagonize 5-hydroxytryptamine more than tryptamine on the rat fundus strip. Br J Pharmacol Chemother 16(2):153–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bear HA, Edbrooke-Childs J, Norton S, Krause KR, Wolpert M (2019) Systematic review and meta-analysis: outcomes of routine specialist mental health care for young people with depression and/or anxiety. J Am Acad Child Adolesc Psychiatry

  • Benneh CK, Biney RP, Mante PK, Tandoh A, Adongo DW, Woode E (2017) Maerua angolensis stem bark extract reverses anxiety and related behaviours in zebrafish—involvement of GABAergic and 5-HT systems. J Ethnopharmacol 207:129–145

    Article  CAS  PubMed  Google Scholar 

  • Bergner CL, Smolinsky AN, Hart PC, Dufour BD, Egan RJ, LaPorte JL et al (2016) Mouse models for studying depression-like states and antidepressant drugs. In: Mouse Models for Drug Discovery. Springer, pp 255–269

  • Bian HT, Wang GH, Huang JJ, Liang L, Xiao L, Wang HL (2020) Scutellarin protects against lipopolysaccharide-induced behavioral deficits by inhibiting neuroinflammation and microglia activation in rats. Int Immunopharmacol 88:106943

    Article  CAS  PubMed  Google Scholar 

  • Biney RP, Mante PK, Boakye-Gyasi E, Kukuia KE, Woode E (2014) Neuropharmacological effects of an ethanolic fruit extract of Xylopia aethiopica and xylopic acid, a kaurene diterpene isolate, in mice. West Afr J Pharm 25(1):106–117

    Google Scholar 

  • Biney RP, Benneh CK, Ameyaw EO, Boakye-Gyasi E, Woode E (2016) Xylopia aethiopica fruit extract exhibits antidepressant-like effect via interaction with serotonergic neurotransmission in mice. J Ethnopharmacol 184:49–57

    Article  CAS  PubMed  Google Scholar 

  • Biney RP, Benneh CK, Kyekyeku JO, Ameyaw EO, Boakye-Gyasi E, Woode E (2018) Attenuation of anxiety behaviours by xylopic acid in mice and zebrafish models of anxiety disorder. UKJPB 6(3):7–16

    CAS  Google Scholar 

  • Bourin M (2019) Animal research in psychiatry. In: Frontiers in Psychiatry. Springer, pp 283–296

  • Bourin M, Chenu F, Ripoll N, David DJP (2005) A proposal of decision tree to screen putative antidepressants using forced swim and tail suspension tests. Behav Brain Res 164(2):266–269

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254

    Article  CAS  PubMed  Google Scholar 

  • Cavalcanti B, Ferreira J, Moura D, Rosa R, Furtado G, Burbano R et al (2010) Structure–mutagenicity relationship of kaurenoic acid from Xylopia sericeae (Annonaceae). Mutat Res Genet Toxicol Environ Mutagen 701(2):153–163

    Article  CAS  Google Scholar 

  • Chakravarty S, Reddy BR, Sudhakar SR, Saxena S, Das T, Meghah V et al (2013) Chronic unpredictable stress (CUS)-induced anxiety and related mood disorders in a zebrafish model: altered brain proteome profile implicates mitochondrial dysfunction. PLoS One 8(5):e63302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cipriani A, Furukawa TA, Salanti G, Chaimani A, Atkinson LZ, Ogawa Y et al (2018) Comparative efficacy and acceptability of 21 antidepressant drugs for the acute treatment of adults with major depressive disorder: a systematic review and network meta-analysis. Lancet 391(10128):1357–1366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crestani F, Seguy F, Dantzer R (1991) Behavioural effects of peripherally injected interleukin-1: role of prostaglandins. Brain Res 542(2):330–335

    Article  CAS  PubMed  Google Scholar 

  • Czarny P, Wigner P, Galecki P, Sliwinski T (2018) The interplay between inflammation, oxidative stress, DNA damage, DNA repair and mitochondrial dysfunction in depression. Prog Neuro-Psychopharmacol Biol Psychiatry 80:309–321

    Article  CAS  Google Scholar 

  • Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW (2008) From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9(1):46–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Draper H, Hadley M (1990) Malondialdehyde determination as index of lipid peroxidation. In: Methods in enzymology, vol 186. Elsevier, pp 421–431

  • Ekuadzi E, Biney RP, Benneh CK, Osei Amankwaa B, Jato J (2018) Antiinflammatory properties of betulinic acid and xylopic acid in the carrageenan-induced pleurisy model of lung inflammation in mice. Phytother Res 32(3):480–487

    Article  CAS  PubMed  Google Scholar 

  • Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82(1):70–77

    Article  CAS  PubMed  Google Scholar 

  • Fontana BD, Mezzomo NJ, Kalueff AV, Rosemberg DB (2018) The developing utility of zebrafish models of neurological and neuropsychiatric disorders: a critical review. Exp Neurol 299:157–171

    Article  PubMed  Google Scholar 

  • Gross C, Seroogy KB (2020) Neuroprotective roles of neurotrophic factors in depression. In: Neuroprotection in Autism, Schizophrenia and Alzheimer’s Disease. Elsevier, pp 125–144

  • Harro J (2019) Animal models of depression: pros and cons. Cell Tissue Res 1–16

  • James SL, Abate D, Abate KH, Abay SM, Abbafati C, Abbasi N et al (2018) Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 392(10159):1789–1858

    Article  Google Scholar 

  • Jangra A, Lukhi MM, Sulakhiya K, Baruah CC, Lahkar M (2014) Protective effect of mangiferin against lipopolysaccharide-induced depressive and anxiety-like behaviour in mice. Eur J Pharmacol 740:337–345

    Article  CAS  PubMed  Google Scholar 

  • Jangra A, Kwatra M, Singh T, Pant R, Kushwah P, Sharma Y et al (2016) Piperine augments the protective effect of curcumin against lipopolysaccharide-induced neurobehavioral and neurochemical deficits in mice. Inflammation 39(3):1025–1038

    CAS  PubMed  Google Scholar 

  • Kalueff AV, Stewart AM, Gerlai R (2014) Zebrafish as an emerging model for studying complex brain disorders. Trends Pharmacol Sci 35(2):63–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kokel D, Peterson RT (2011) Using the zebrafish photomotor response for psychotropic drug screening. Methods Cell Biol 105:517–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolbeck R, Bartke I, Eberle W, Barde YA (1999) Brain-derived neurotrophic factor levels in the nervous system of wild-type and neurotrophin gene mutant mice. J Neurochem 72(5):1930–1938

    Article  CAS  PubMed  Google Scholar 

  • Li Y-F (2020) A hypothesis of monoamine (5-HT) – glutamate/GABA long neural circuit: aiming for fast-onset antidepressant discovery. Pharmacol Ther 208:107494

    Article  CAS  PubMed  Google Scholar 

  • Maximino C, de Brito TM, da Silva Batista AW, Herculano AM, Morato S, Gouveia A Jr (2010) Measuring anxiety in zebrafish: a critical review. Behav Brain Res 214(2):157–171

    Article  PubMed  Google Scholar 

  • Meshalkina DA, Kysil EV, Antonova KA, Demin KA, Kolesnikova TO, Khatsko SL et al (2018) The effects of chronic amitriptyline on zebrafish behavior and monoamine neurochemistry. Neurochem Res 43(6):1191–1199

    Article  CAS  PubMed  Google Scholar 

  • Mizui T, Ishikawa Y, Kumanogoh H, Kojima M (2016) Neurobiological actions by three distinct subtypes of brain-derived neurotrophic factor: multi-ligand model of growth factor signaling. Pharmacol Res 105:93–98

    Article  CAS  PubMed  Google Scholar 

  • Mnie-Filali O, Faure C, Lambás-Señas L, El Mansari M, Belblidia H, Gondard E et al (2011) Pharmacological blockade of 5-HT7 receptors as a putative fast acting antidepressant strategy. Neuropsychopharmacology 36(6):1275–1288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mussulini BHM, Leite CE, Zenki KC, Moro L, Baggio S, Rico EP et al (2013) Seizures induced by pentylenetetrazole in the adult zebrafish: a detailed behavioral characterization. PLoS One 8(1):e54515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nowakowska K, Giebułtowicz J, Kamaszewski M, Adamski A, Szudrowicz H, Ostaszewska T et al (2020) Acute exposure of zebrafish (Danio rerio) larvae to environmental concentrations of selected antidepressants: bioaccumulation, physiological and histological changes. Comp Biochem Physiol, Part C: Toxicol Pharmacol 229:108670

    CAS  Google Scholar 

  • O’Leary OF, Bechtholt AJ, Crowley JJ, Hill TE, Page ME, Lucki I (2007) Depletion of serotonin and catecholamines block the acute behavioral response to different classes of antidepressant drugs in the mouse tail suspension test. Psychopharmacology 192(3):357–371

    Article  PubMed  CAS  Google Scholar 

  • Opal MD, Klenotich SC, Morais M, Bessa J, Winkle J, Doukas D et al (2014) Serotonin 2C receptor antagonists induce fast-onset antidepressant effects. Mol Psychiatry 19(10):1106–1114

    Article  CAS  PubMed  Google Scholar 

  • Osafo N, Biney RP, Obiri DD (2016) Aqueous ethanol fruit extract of Xylopia aethiopica and xylopic acid exhibit anti-inflammatory activity through inhibition of the arachidonic acid pathway. UK J Pharm Biosci 4:35–41

    CAS  Google Scholar 

  • Osafo N, Obiri DD, Antwi AO, Yeboah OK (2018) The acute anti-inflammatory action of xylopic acid isolated from Xylopia aethiopica. J Basic Clin Physiol Pharmacol 29(6):659–669

    Article  CAS  PubMed  Google Scholar 

  • Osafo N, Obiri DD, Danquah KO, Essel LB, Antwi AO (2019) Potential effects of xylopic acid on acetic acid-induced ulcerative colitis in rats. Turk J Gastroenterol 30(8):732–744

    Article  PubMed  Google Scholar 

  • Ostadhadi S, Khan MI, Norouzi-Javidan A, Chamanara M, Jazaeri F, Zolfaghari S et al (2016) Involvement of NMDA receptors and L-arginine/nitric oxide/cyclic guanosine monophosphate pathway in the antidepressant-like effects of topiramate in mice forced swimming test. Brain Res Bull 122:62–70

    Article  CAS  PubMed  Google Scholar 

  • Otte C, Gold SM, Penninx BW, Pariante CM, Etkin A, Fava M et al (2016) Major depressive disorder. Nat Rev Dis Primers 2(1):1–20

    Article  Google Scholar 

  • Pehrson AL, Sanchez C (2014) Serotonergic modulation of glutamate neurotransmission as a strategy for treating depression and cognitive dysfunction. CNS Spectrums 19(2):121–133

    Article  PubMed  Google Scholar 

  • Piato ÂL, Capiotti KM, Tamborski AR, Oses JP, Barcellos LJ, Bogo MR et al (2011) Unpredictable chronic stress model in zebrafish (Danio rerio): behavioral and physiological responses. Prog Neuro-Psychopharmacol Biol Psychiatry 35(2):561–567

    Article  CAS  Google Scholar 

  • Poleszak E, Wlaź P, Szewczyk B, Wlaź A, Kasperek R, Wróbel A et al (2011) A complex interaction between glycine/NMDA receptors and serotonergic/noradrenergic antidepressants in the forced swim test in mice. J Neural Transm 118(11):1535–1546

    Article  CAS  PubMed  Google Scholar 

  • Poleszak E, Stasiuk W, Szopa A, Wyska E, Serefko A, Oniszczuk A et al (2016) Traxoprodil, a selective antagonist of the NR2B subunit of the NMDA receptor, potentiates the antidepressant-like effects of certain antidepressant drugs in the forced swim test in mice. Metab Brain Dis 31(4):803–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porsolt RD, Le Pichon M, Jalfre M (1977) Depression: a new animal model sensitive to antidepressant treatments. Nature 266(5604):730–732

    Article  CAS  PubMed  Google Scholar 

  • Ramaker M, Dulawa S (2017) Identifying fast-onset antidepressants using rodent models. Mol Psychiatry 22(5):656–665

    Article  CAS  PubMed  Google Scholar 

  • Réus GZ, Abelaira HM, Tuon T, Titus SE, Ignácio ZM, Rodrigues ALS et al (2016) Glutamatergic NMDA receptor as therapeutic target for depression. In: Advances in protein chemistry and structural biology, vol 103. Elsevier, pp 169–202

  • Ripoll N, David DJP, Dailly E, Hascoët M, Bourin M (2003) Antidepressant-like effects in various mice strains in the tail suspension test. Behav Brain Res 143(2):193–200

    Article  CAS  PubMed  Google Scholar 

  • Rossi S, Studer V, Motta C, Polidoro S, Perugini J, Macchiarulo G et al (2017) Neuroinflammation drives anxiety and depression in relapsing-remitting multiple sclerosis. Neurology 89(13):1338–1347

    Article  CAS  PubMed  Google Scholar 

  • Ruhé HG, Mason NS, Schene AH (2007) Mood is indirectly related to serotonin, norepinephrine and dopamine levels in humans: a meta-analysis of monoamine depletion studies. Mol Psychiatry 12(4):331–359

    Article  PubMed  CAS  Google Scholar 

  • Schröter K, Brum M, Brunkhorst-Kanaan N, Tole F, Ziegler C, Domschke K et al (2020) Longitudinal multi-level biomarker analysis of BDNF in major depression and bipolar disorder. Eur Arch Psychiatry Clin Neurosci 270(2):169–181

    Article  PubMed  Google Scholar 

  • Sinha AK (1972) Colorimetric assay of catalase. Anal Biochem 47(2):389–394

    Article  CAS  PubMed  Google Scholar 

  • Smolinsky AN, Bergner CL, LaPorte JL, Kalueff AV (2009) Analysis of grooming behavior and its utility in studying animal stress, anxiety, and depression. In: Mood and anxiety related phenotypes in mice. Springer, pp 21–36

  • Steru L, Chermat R, Thierry B, Simon P (1985) The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology 85(3):367–370

    Article  CAS  PubMed  Google Scholar 

  • Stewart AM, Braubach O, Spitsbergen J, Gerlai R, Kalueff AV (2014) Zebrafish models for translational neuroscience research: from tank to bedside. Trends Neurosci 37(5):264–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stone EA, Lin Y (2011) Open-space forced swim model of depression for mice. Curr Protoc Neurosci 54(1):9.36. 31–39.36. 38

    Article  Google Scholar 

  • Strawn JR, Mills JA, Sauley BA, Welge JA (2018) The impact of antidepressant dose and class on treatment response in pediatric anxiety disorders: a meta-analysis. J Am Acad Child Adolesc Psychiatry 57(4):235–244 e232

    Article  PubMed  PubMed Central  Google Scholar 

  • Sulakhiya K, Keshavlal GP, Bezbaruah BB, Dwivedi S, Gurjar SS, Munde N et al (2016) Lipopolysaccharide induced anxiety-and depressive-like behaviour in mice are prevented by chronic pre-treatment of esculetin. Neurosci Lett 611:106–111

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Oberley LW, Li Y (1988) A simple method for clinical assay of superoxide dismutase. Clin Chem 34(3):497–500

    Article  CAS  PubMed  Google Scholar 

  • Takahashi JA, Boaventura MAD, de Carvalho BJ (1995) Frutoic acid, a dimeric kaurane diterpene from Xylopia frutescens. Phytochemistry 40(2):607–609

    Article  CAS  Google Scholar 

  • Tomaz V, Cordeiro R, Costa A, De Lucena D, Júnior HN, De Sousa F et al (2014) Antidepressant-like effect of nitric oxide synthase inhibitors and sildenafil against lipopolysaccharide-induced depressive-like behavior in mice. Neuroscience 268:236–246

    Article  CAS  PubMed  Google Scholar 

  • Vane J (1959) The relative activities of some tryptamine analogues on the isolated rat stomach strip preparation. Br J Pharmacol Chemother 14(1):87–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vidal R, Castro E, Pilar-Cuellar F, Pascual-Brazo J, Diaz A, Luisa Rojo M et al (2014) Serotonin 5-HT4 receptors: a new strategy for developing fast acting antidepressants? Curr Pharm Des 20(23):3751–3762

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Jing L, Toledo-Salas J-C, Xu L (2015) Rapid-onset antidepressant efficacy of glutamatergic system modulators: the neural plasticity hypothesis of depression. Neurosci Bull 31(1):75–86

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Zhu L, Hu J, Guo R, Ye S, Liu F et al (2020) FGF21 attenuated LPS-induced depressive-like behavior via inhibiting the inflammatory pathway. Front Pharmacol 11:154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whooley MA, Wong JM (2013) Depression and cardiovascular disorders. Annu Rev Clin Psychol 9:327–354

    Article  PubMed  Google Scholar 

  • Woelfer M, Kasties V, Kahlfuss S, Walter M (2019) The role of depressive subtypes within the neuroinflammation hypothesis of major depressive disorder. Neuroscience 403:93–110

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Guo P, Liu C, Sun Z, Gui L, Guo Y et al (2011) Neuroprotective kaurane diterpenes from Fritillaria ebeiensis. Biosci Biotechnol Biochem 75(7):1386–1388

    Article  CAS  PubMed  Google Scholar 

  • Yalcin I, Aksu F, Bodard S, Chalon S, Belzung C (2007) Antidepressant-like effect of tramadol in the unpredictable chronic mild stress procedure: possible involvement of the noradrenergic system. Behav Pharmacol 18(7):623–631

    Article  CAS  PubMed  Google Scholar 

  • Zanos P, Thompson SM, Duman RS, Zarate CA, Gould TD (2018) Convergent mechanisms underlying rapid antidepressant action. CNS Drugs 32(3):197–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Yi S, Li Y, Xiao C, Liu C, Jiang W et al (2020) The antidepressant effects of asperosaponin VI are mediated by the suppression of microglial activation and reduction of TLR4/NF-κB-induced IDO expression. Psychopharmacology 237:2531–2545

    Article  CAS  PubMed  Google Scholar 

  • Zhou Q-G, Zhu X-H, Nemes AD, Zhu D-Y (2018) Neuronal nitric oxide synthase and affective disorders. IBRO Rep 5:116–132

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to technicians of the Departments of Pharmacology in Kwame Nkrumah University of Science and Technology and in University of Cape Coast for their technical support at various stages of the project.

Funding

This work was funded using personal funds of all contributing authors.

Author information

Authors and Affiliations

Authors

Contributions

RPB conducted all experiments, analysed the data and wrote the first draft of manuscript. CKB participated in the carrying experiments on mechanism of action and zebrafish assays. DWA participated in chronic depression experiments and analyses of the data. EW and EOA conceptualised the work, provided supervision of the experiments and reviewed the analyses. All authors reviewed the final manuscript.

Corresponding author

Correspondence to Robert Peter Biney.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biney, R.P., Benneh, C.K., Adongo, D.W. et al. Evidence of an antidepressant-like effect of xylopic acid mediated by serotonergic mechanisms. Psychopharmacology 238, 2105–2120 (2021). https://doi.org/10.1007/s00213-021-05835-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-021-05835-6

Keywords

Navigation