Skip to main content
Log in

Experimental study of a positive DC corona jet working with \(\hbox {Ar/CO}_{2}\) gaseous mixture

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this experimental work, the physical and electrical characteristics of a fabricated positive DC corona jet are analysed. The designed plasma jet operates with the direct current (DC) applied voltage and \(\hbox {Ar}/\hbox {CO}_{2}\) mixture at the atmospheric pressure (760 Torr). The emitted spectra are analysed by the optical emission spectroscopy technique. Then, the rotational, vibrational and excitation temperatures, electron density and \(\hbox {CO}_{2}\) dissociation degrees are obtained. Besides, using the actinometry method, the carbon dioxide dissociation process is studied. The \(\hbox {CO}_{2}\) excitation and ionisation from \(X^{2}\Pi _{g}\rightarrow A^{2}\Pi _{u}\) transitions along with the OH emission band from the \(\mathrm {A}^{2}\Sigma \rightarrow \mathrm {X}^{2}\Pi \) transitions are detected. It is seen that at all the temperatures, electron number density and \(\hbox {CO}_{2}\) dissociation to CO, \(\hbox {O}_{2}\) and O species are increased at higher input electrical currents

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A Bogaerts, T Kozák, K Van Laer and R Snoeckx, Faraday discuss. 183, 217 (2015)

    Article  ADS  Google Scholar 

  2. A Bogaerts, E Neyts, R Gijbels and J Van der Mullen, Spectrochim. Acta B 57, 609 (2002)

    Article  ADS  Google Scholar 

  3. R K Marcus, Glow discharge spectroscopies (Springer, New York, 1993)

    Book  Google Scholar 

  4. R Payling, D Jones and A Bengtson, Glow discharge optical emission spectrometry (Wiley, Michigan, 2010)

    Google Scholar 

  5. R K Marcus and J Broekaert, Glow discharge plasmas in analytical spectroscopy (Wiley, England, 2003)

    Google Scholar 

  6. M A Lindon and E E Scime, Front. Phys. 2, 1 (2014)

    Article  Google Scholar 

  7. S Davis and R Socolow, Environ. Res. Lett. 9, 084018 (2014)

    Article  ADS  Google Scholar 

  8. J G Olivier, G Janssens-Maenhout, M Muntean and J A H W Peters, PBL Netherlands Environmental Assessment Agency Report (2012)

  9. C D Cooper and R N Compton, Chem. Phys. Lett. 14, 29 (1972)

    Article  ADS  Google Scholar 

  10. M Laroussi and F Leipold, Int. J. Spectrom. 233, 81 (2004)

    Article  Google Scholar 

  11. M Lezius, T Rauth, V Grill, M Foltin and T D Märk, Z. Phys. D: At. Mol. Clusters 24, 289 (1992)

    Article  Google Scholar 

  12. M A Huels, L Parenteau, P Cloutier and L Sanche, J. Chem. Phys. 103, 6775 (1995)

    Article  ADS  Google Scholar 

  13. J Simons and K D Jordan, Chem. Rev. 87, 535 (1987)

    Article  Google Scholar 

  14. R Clampitt and A S Newton, J. Chem. Phys. 50, 199 (1969)

    Article  Google Scholar 

  15. H He, P Zapol and L A Curtiss, J. Phys. Chem. C 11, 21474 (2010)

    Article  Google Scholar 

  16. M Michaud, E M Hébert, P Cloutier and L Sanche, J. Chem. Phys. 126, 024701 (2007)

    Article  ADS  Google Scholar 

  17. P Pokorný, J Bulíř, J Lančok, J Musil and M Novotný, Plasma Process. Polym. 7, 910 (2010)

    Article  Google Scholar 

  18. R M Snuggs, D J Volz, J H Schummers, D W Martin and E W McDaniel, Phys. Rev. A 3, 477 (1971)

    Article  ADS  Google Scholar 

  19. J M Goodings, D K Bohme and C Ng, Combust. Flame. 36, 45 (1979)

    Article  Google Scholar 

  20. H A Erikson, Phys. Rev. 20, 117 (1922)

    Article  ADS  Google Scholar 

  21. J Wagner and J Katsch, Plasma Sources Sci. Technol. 15, 156 (2006)

    Article  ADS  Google Scholar 

  22. Z Z Su, K Ito, K Takashima, S Katsura, K Onda and A Mizuno, J. Phys. D 35, 3192 (2002)

    Article  ADS  Google Scholar 

  23. J Houghton, Rep. Prog. Phys. 68, 1343 (2005)

    Article  ADS  Google Scholar 

  24. J S Chang and T G Beuthe, J. High Temp. Chem. Pros. 1, 333 (1992)

    Google Scholar 

  25. A Huczko and A Szymanski, Plasma Chem. Plasma Prosc. 4, 59 (1984)

    Article  Google Scholar 

  26. E Maouhoub, Eur. Phys. J. AP 3, 81 (1998)

    Article  ADS  Google Scholar 

  27. T Silva, N Britun, T Godfroid, J van der Mullen and R Snyders, J. Appl. Phys. 119, 173302 (2016)

    ADS  Google Scholar 

  28. K Shimizu and T Oda, Sci. Technol. Adv. Mater. 2, 577 (2001)

    Article  Google Scholar 

  29. L G Piper, L M Cowles and W T Rawlins, J. Chem. Phys. 85, 3369 (1986)

    Article  ADS  Google Scholar 

  30. Z Machala, J. Phys. D 33, 3198 (2000)

    Article  ADS  Google Scholar 

  31. P Bruggeman and D Schram, Plasma Sources Sci. Technol. 19, 045025 (2010)

    Article  ADS  Google Scholar 

  32. D Nie, W Wang, D Yang, H Shi, Y Huo and L Dai, Spectrochim. Acta A 79, 1896 (2011)

    Article  ADS  Google Scholar 

  33. R Pearse and A Gaydon, The identification of molecular spectra (Whitefriars Press, London, 1956)

    Google Scholar 

  34. M Aresta, Carbon dioxide as chemical feedstock (Wiley, Weinheim, 2010)

    Book  Google Scholar 

  35. S L Brock, J. Catal. 180, 225 (1998)

    Article  Google Scholar 

  36. N K Bibinov, A A Fateev and K Wiesemann, J. Phys. D 34, 1819 (2001)

    Article  ADS  Google Scholar 

  37. L F Spencer and A D Gallimore, Plasma Sources Sci. Technol. 22, 015019 (2013)

    Article  ADS  Google Scholar 

  38. J Boffard, C Lin and C A DeJoseph, J. Phys. D 37, R143 (2004)

    Article  ADS  Google Scholar 

  39. V M Donnelly, J. Phys. D 37, 217 (2004)

    Article  ADS  Google Scholar 

  40. A Lofthus and P H Krupenie, J. Phys. Chem. Ref. Data 6, 113 (1977)

    Article  ADS  Google Scholar 

  41. E Stoffels, A J Flikweert, W W Stoffels and G M W Kroesen, Plasma Sources Sci. Technol. 11, 383 (2002)

    Article  ADS  Google Scholar 

  42. S Pandhija and A K Rai, Appl. Phys. B 94, 545 (2009)

    Article  ADS  Google Scholar 

  43. https://physics.nist.gov/PhysRefData/ASD/linesform.html

  44. H R Griem, Plasma spectroscopy (McGraw-Hill, New York, 1964)

    Google Scholar 

  45. J Torres, M J Van De Sande, J J A M Van Der Mullen, A Gamero and A Sola, Spectrochim. Acta B 61, 58 (2006)

    Article  ADS  Google Scholar 

  46. C O Laux, T G Spence, C H Kruger and R N Zare, Plasma Sources Sci. Technol. 12, 125 (2003)

    Article  ADS  Google Scholar 

  47. M A Gigosos and V Cardenoso, J. Phys. B 29, 4795 (1996)

    Article  ADS  Google Scholar 

  48. F J Mehr and M A Biondi, Phys. Rev. 176, 322 (1968)

    Article  ADS  Google Scholar 

  49. S G Belostotskiy, T Ouk, V M Donnelly, D J Economou and N Sadeghi, J. Appl. Phys. 107, 053305 (2010)

    Article  ADS  Google Scholar 

  50. A Y Nikiforov, C Leys, M A Gonzalez and J L Walsh, Plasma Sources Sci. Technol. 24, 034001 (2015)

    Article  ADS  Google Scholar 

  51. G G Raju, Gaseous electronics theory and practice (CRC Press, UK, 2005)

    Book  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology for financial support within the Project No. 3422/95/S/7-22/12/1395.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Ganjovi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barkhordari, A., Ganjovi, A. & Mirzaei, S.I. Experimental study of a positive DC corona jet working with \(\hbox {Ar/CO}_{2}\) gaseous mixture. Pramana - J Phys 95, 62 (2021). https://doi.org/10.1007/s12043-021-02090-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-021-02090-4

Keywords

PACS Nos

Navigation