Skip to main content
Log in

Effect of magnetic field on elements segregation in electroslag ingot

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

In order to improve the production efficiency of electroslag remelting process and the solidification quality of electroslag ingot, a novel electroslag furnace with electromagnetic stirring was designed and the effects of external magnetic field and different electrical parameters on electroslag remelting process were studied. The distribution of carbon, chromium, phosphorus and compactness in electroslag ingot was analyzed through original position analysis apparatus. Results show that the external magnetic field accelerates the remelting of consumable electrode. Under the condition of remelting voltage of 34 V and current of 1500 A, the remelting rate of metal consumable electrode increases from 20 to 27 mm min−1 when the magnetic induction intensity of 62 × 10−4 and 108 × 10−4 T is applied. However, the remelting current decreases from 1500 to 1100 A under the condition of constant remelting rate and remelting voltage, thereby reducing the energy consumption. The effect of external magnetic field on the segregation of different elements in electroslag ingot is different. Under the experimental conditions, the carbon segregation is unremarkable, but the phosphorus segregation is improved when the electromagnetic force generated by the interaction between the external magnetic field and the remelting current is small. However, the excessive electromagnetic force aggravates the segregation of carbon and phosphorus. With the increase in electromagnetic force, the chromium segregation gradually increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. E.J. Lavernia, T.S. Srivatsan, J. Mater. Sci. 45 (2010) 287–325.

    Article  Google Scholar 

  2. J. Jin, R. Gao, H. Peng, H. Guo, S. Gong, B. Chen, Metall. Mater. Trans. A 51 (2020) 2411–2429.

    Article  Google Scholar 

  3. D.Q. Jiang, R. Wang, Q. Zhang, Z.Q. Zhang, T.S. Tu, J. Wang, Z.M. Ren, J. Iron Steel Res. Int. 27 (2020) 141–147.

    Article  Google Scholar 

  4. Y.B. Yin, J.M. Zhang, B. Wang, Q.P. Dong, Ironmak. Steelmak. 46 (2019) 682–691.

    Article  Google Scholar 

  5. T. Sun, F. Yue, H.J. Wu, C. Guo, Y. Li, Z.C. Ma, J. Iron Steel Res. Int. 23 (2016) 329–337.

    Article  Google Scholar 

  6. Z.B. Xiao, Y.C. Huang, Arch. Metall. Mater. 63 (2018) 293–298.

    Google Scholar 

  7. R.R. Wei, X.W. Lv, M.R. Yang, J. Xu, Z.X. You, Metall. Mater. Trans. B 49 (2018) 2658–2666.

    Article  Google Scholar 

  8. X.F. Shi, L.Z. Chang, L. Zhou, J. Iron Steel Res. Int. 26 (2019) 137–147.

    Article  Google Scholar 

  9. H. Suito, H. Ohta, S. Morioka, ISIJ Int. 46 (2006) 840–846.

    Article  Google Scholar 

  10. K.L. Ng, H. Sasaki, H. Kimura, T. Yoshikawa, M. Maeda, ISIJ Int. 58 (2018) 123–131.

    Article  Google Scholar 

  11. G. Hoyle, Electroslag processes principles and practice, Applied Science Publishers, London, UK, 1983.

    Google Scholar 

  12. A. Mitchell, Mater. Sci. Eng. A 413–414 (2005) 10–18.

    Article  Google Scholar 

  13. A. Kharicha, E. Karimi-Sibaki, M.H. Wu, A. Ludwig, J. Bohacek, Steel Res. Int. 89 (2018) 1700100.

    Article  Google Scholar 

  14. A. Kharicha, M. Wu, A. Ludwig, E. Karimi-Sibaki, Metall. Mater. Trans. B 47 (2016) 1427–1434.

    Article  Google Scholar 

  15. E. Karimi-Sibaki, A. Kharicha, M.H. Wu, A. Ludwig, J. Bohacek, Steel Res. Int. 88 (2017) 1700011.

    Article  Google Scholar 

  16. Z.B. Li, Electroslag metallurgy theory and practice, Metallurgical Industry Press, Beijing, China, 2010.

    Google Scholar 

  17. D. Alghisi, M. Milano, L. Pazienza, In: E.O. Paton, Medovar Memorial Symposium, Elmet-Roll–Medovar Group, Kyiv, Ukraine, 2001, pp. 97–112.

  18. Y.W. Dong, Z.H. Jiang, L. Medovar, G. Stovpchenko, X.F. Zhang, X.M. Zang, X. Deng, Steel Res. Int. 84 (2013) 1011–1017.

    Google Scholar 

  19. K. Fezi, J. Yanke, M.J.M. Krane, Metall. Mater. Trans. B 46 (2015) 766–779.

    Article  Google Scholar 

  20. X.M. Zang, X. Deng, W.M. Li, T.Y. Qiu, Z.H. Jiang, Journal of University of Science and Technology Liaoning 38 (2015) 321–325.

    Google Scholar 

  21. Z.B. Li, X.Q. Che, J.W. Zhang, Iron and Steel 28 (1993) No. 2, 20–24, 5.

    Google Scholar 

  22. F.L. Zhang, J.L. Yuan, Y.Z. Zhai, X.F. Zhang, B.B. Li, C. Li, Special Steel 40 (2019) No. 4, 55–58.

    Google Scholar 

  23. Q. Li, Z.B. Xia, W.T. Qi, C.X. Sun, Z. Shen, T.X. Zheng, Y.B. Zhong, Die & Mould Industry. 45 (2019) No. 12, 64–67.

    Google Scholar 

  24. M. Murgaš, A.S. Chaus, A. Pokusa, M. Pokusová, ISIJ Int. 40 (2000) 980–986.

    Article  Google Scholar 

  25. A. Mitchell, B. Hernandez-Morales, Metall. Trans. B 21 (1990) 723–731.

    Article  Google Scholar 

  26. X.F. Shi, L.Z. Chang, J.J. Wang, Int. J. Miner. Metall. Mater. 22 (2015) 1033–1042.

    Article  Google Scholar 

  27. X.F. Shi, L.Z. Chang, Z.H. Zhu, J.J. Wang, L. Zhou, J. Iron Steel Res. Int. 23 (2016) 1168–1176.

    Article  Google Scholar 

  28. Q.T. Zhu, J. Li, C.B. Shi, W.T. Yu, Int. J. Miner. Metall. Mater. 22 (2015) 1149–1156.

    Article  Google Scholar 

  29. Z.M. Ren, Z.S. Lei, C.J. Li, W.D. Xuan, Y.B. Zhong, X. Li, Acta Metall. Sin. 56 (2020) 583–600.

    Google Scholar 

  30. H.B. Chen, M.J. Long, D.F. Chen, L.T. Gui, Y.G. Ma, H.M. Duan, J. Iron Steel Res. 29 (2017) 637–642.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51774003, 52074002, and 51974002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-fang Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, G., Zhu, Cl., Shi, Xf. et al. Effect of magnetic field on elements segregation in electroslag ingot. J. Iron Steel Res. Int. 29, 434–444 (2022). https://doi.org/10.1007/s42243-021-00600-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-021-00600-7

Keywords

Navigation