Skip to main content
Log in

Continuous Extension of Functions from a Segment to Functions in \(\mathbb{R}^n\) with Zero Ball Means

  • Published:
Russian Mathematics Aims and scope Submit manuscript

Abstract

Let \(\mathbb{R}^n\) be a Euclidean space of dimension \(n\geq 2\). For a domain \(G\subset \mathbb{R}^n\), we denote by \(V_r(G)\) the set of functions \(f\in L_{\mathrm{loc}}(G)\) having zero integrals over all closed balls of radius r contained in G (if domain G does not contain such balls, we set \(V_r(G)=L_{\mathrm{loc}}(G)\)). Let E be a nonempty subset of \(\mathbb{R}^n\). In this paper we study the following questions related to the extension problem.

1) Which conditions guarantee the extension of a continuous function defined on E to a continuous function of class \(V_r(\mathbb{R}^n)\) defined on the whole \(\mathbb{R}^n\)?

2) If the above extension exists, obtain growth estimates of the extended function at infinity.

Theorem 1 of this paper shows that for a wide class of continuous functions on segment E defined in terms of the modulus of continuity, there exists an extension to a bounded function of class \((V_r\cap C)(\mathbb{R}^n)\) regardless of the length of segment E. A similar result is not true for open sets E with a diameter greater than 2r, even without conditions for extension growth. Theorem 1 also contains an estimate of the velocity decrease of the extended function at infinity in directions orthogonal to the segment E.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Pompeiu, D. “Sur une propriété intégrale de fonctions de deux variables réeles”, Bull. Sci. Acad. Royale Belgique. Sér. 5 15, 265–269 (1929).

  2. Chakalov, L. “Sur un problème de D. Pompeiu”, Annuaire [Godišnik] Univ. Sofia Fac. Phys.-Math., Liv. 1 40, 1–14 (1944).

  3. Radon, J. “Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten”, Ber. Verh. Sächs. Akad. Wiss. Leipzig. Math.-Nat. Kl. 69, 262–277 (1917).

  4. Volchkov, V.V., Volchkov Vit.V. Offbeat Integral Geometry on Symmetric Spaces (Birkhäuser, Basel, 2013).

  5. Zalcman, L. “A bibliographic survey of the Pompeiu problem” (in: Approx. by solut. of part. diff. equat., pp. 185–194 (Kluwer Academic Publishers, Dordrecht, 1992)).

  6. Berenstein, C.A., Struppa, D.C. Complex analysis and convolution equations, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr. 54, 5–111 (1989) [in Russian].

  7. Zalcman, L. “Supplementary bibliography to “A bibliographic survey of the Pompeiu problem”, Contemp. Math. Radon Transform and Tomography 278, 69–74 (2001).

  8. Volchkov, V.V. Integral geometry and convolution equations (Kluwer Academic Publishers, Dordrecht, 2003).

  9. Volchkov, V.V., Volchkov, Vit.V. Harmonic Analysis of Mean Periodic Functions on Symmetric Spaces and the Heisenberg Group (Springer, London, 2009).

  10. John, F. Plane Waves and Spherical Means Applied to Partial Differential Equations (Springer, New York, 1981).

  11. Smith, J.D. “Harmonic analysis of scalar and vector fields in \(\mathbb R^n\)”, Proc. Cambridge Philos. Soc. 72, 403–416 (1972).

  12. Rawat, R., Sitaram, A. “The injectivity of the Pompeiu transform and Lp-analogues of the Wiener Tauberian theorem”, Israel J. Math. 91, 307–316 (1995).

  13. Thangavelu, S. “Spherical means and \(\mathrm{CR}\) functions on the Heisenberg group”, J. Anal. Math. 63, 255–286 (1994).

  14. Ungar, P. “Freak theorem about functions on a sphere”, J. London Math. Soc. (2) 29, 100–103 (1954).

  15. Schneider, R. “Functions on a sphere with vanishing integrals over certain subspheres”, J. Math. Anal. Appl. 26, 381–384 (1969).

  16. Delsarte, J. “Note sur une propriété nouvelle des fonctions harmoniques”, C. R. Acad. Sci. Paris Sér. A–B 246, 1358–1360 (1969).

  17. Netuka, I., Vesely, J. “Mean value property and harmonic functions” (in: Classical and Modern potential Theory and Applications, , pp. 359–398 (Kluwer Acad. Publ., 1994)).

  18. Volchkov, V.V. “Solution of the support problem for several function classes”, Sb. Math. 188 (9), 1279–1294 (1997).

  19. Volchkov, Vit.V., Volchkova, N.P. “The removability problem for functions with zero spherical means”, Siberian Math. J. 58 (3), 419–426 (2017).

  20. Berenstein, C.A., Gay, R., Yger, A. “Inversion of the local Pompeiu transform”, J. Anal. Math. 54, 259–287 (1990).

  21. Berkani, M., El Harchaoui, M., Gay, R. “Inversion de la transformation de Pompéiu locale dans l{'}espace hyperbolique quaternique –- Cas des deux boules”, J. Complex Variables 43, 29–57 (2000).

  22. Volchkov, Vit.V., Volchkova, N.P. “Inversion of the local Pompeiu transform on the quaternion hyperbolic space”, Doklady Mathematics 64 (1), 90–93 (2001).

  23. Volchkov, Vit.V., Volchkova, N.P. “Inversion Theorems for the local Pompeiu transformation in the quaternion hyperbolic space”, St. Petersburg Math. J. 15 (5), 753–771 (2003).

  24. Volchkov, V.V., Volchkov, Vit.V. “Interpolation problems for functions with zero integrals over balls of fixed radius”, Doklady Mathematics 101, 16–19 (2020).

  25. Zaraiskiy, D.A. “On sets on which function with zero integrals over balls allow an arbitrary behaviour”, Tr. IPMM 30, 46–52 (2016).

  26. Korenev, B.G. Introduction to the theory of Bessel functions (Nauka, Moscow, 1971) [in Russian].

  27. Zigmund, A. Trigonometric series, V. 1 (Mir, Moscow, 1965) [in Russian].

  28. Zigmund, A. Trigonometric series, V. 2 (Mir, Moscow, 1965) [in Russian].

  29. Bari, N.K. Trigonometric series (Fizmatgiz, Moscow, 1961) [in Russian].

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. V. Volchkov or Vit. V. Volchkov.

Additional information

Russian Text © The Author(s), 2021, published in Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2021, No. 3, pp. 3–14.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volchkov, V.V., Volchkov, V.V. Continuous Extension of Functions from a Segment to Functions in \(\mathbb{R}^n\) with Zero Ball Means. Russ Math. 65, 1–11 (2021). https://doi.org/10.3103/S1066369X21030014

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066369X21030014

Keywords

Navigation