Skip to main content
Log in

\(X(3872)\)transport in heavy-ion collisions

  • Regular Article –Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

An Erratum to this article was published on 18 November 2021

This article has been updated

Abstract

The production of the \(X(3872)\) particle in heavy-ion collisions has been contemplated as an alternative probe of its internal structure. To investigate this conjecture, we perform transport calculations of the \(X(3872)\) through the fireball formed in nuclear collisions at the LHC. Within a kinetic-rate equation approach as previously used for charmonia, the formation and dissociation of the \(X(3872)\) is controlled by two transport parameters, i.e., its inelastic reaction rate and thermal-equilibrium limit in the evolving hot QCD medium. While the equilibrium limit is controlled by the charm production cross section in primordial nucleon-nucleon collisions (together with the spectra of charm states in the medium), the structure information is encoded in the reaction rate. We study how different scenarios for the rate affect the centrality dependence and transverse-momentum (\(p_T\)) spectra of the \(X(3872)\). Larger reaction rates associated with the loosely bound molecule structure imply that it is formed later in the fireball evolution than the tetraquark and thus its final yields are generally smaller by around a factor of two, which is qualitatively different from most coalescence model calculations to date. The \(p_T\) spectra provide further information as the later decoupling time within the molecular scenario leads to harder spectra caused by the blue-shift from the expanding fireball.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: All data included in this manuscript are available upon request by contacting with the corresponding author.]

Change history

References

  1. S. Choi et al., Phys. Rev. Lett. 91, 262001 (2003). (Belle)

    Article  ADS  Google Scholar 

  2. A. Esposito, A. Pilloni, A. Polosa, Phys. Rept. 668, 1 (2017)

    Article  ADS  Google Scholar 

  3. C. Hanhart, Y. Kalashnikova, A.E. Kudryavtsev, A. Nefediev, Phys. Rev. D 76, 034007 (2007)

    Article  ADS  Google Scholar 

  4. R. Molina, E. Oset, Phys. Rev. D 80, 114013 (2009)

    Article  ADS  Google Scholar 

  5. L. Maiani, F. Piccinini, A. Polosa, V. Riquer, Phys. Rev. D 71, 014028 (2005)

    Article  ADS  Google Scholar 

  6. F. Riek, R. Rapp, Phys. Rev. C 82, 035201 (2010)

    Article  ADS  Google Scholar 

  7. CMS Collaboration (CMS), CMS Physics Analysis Summary CMS-PAS-HIN-19-005 (2019)

  8. S. Cho et al., Phys. Rev. Lett. 106, 212001 (2011). (ExHIC)

    Article  ADS  Google Scholar 

  9. K.-J. Sun, L.-W. Chen, Phys. Rev. C 95, 044905 (2017)

    Article  ADS  Google Scholar 

  10. C. Fontoura, G. Krein, A. Valcarce, J. Vijande, Phys. Rev. D 99, 094037 (2019)

    Article  ADS  Google Scholar 

  11. H. Zhang, J. Liao, E. Wang, Q. Wang, H. Xing, Phys. Rev. Lett. 126, 012301 (2021)

    Article  ADS  Google Scholar 

  12. L. Ravagli, R. Rapp, Phys. Lett. B 655, 126 (2007)

    Article  ADS  Google Scholar 

  13. A. Andronic, P. Braun-Munzinger, M.K. Köhler, K. Redlich, J. Stachel, Phys. Lett. B 797, 134836 (2019)

    Article  Google Scholar 

  14. L. Grandchamp, R. Rapp, G.E. Brown, Phys. Rev. Lett. 92, 212301 (2004)

    Article  ADS  Google Scholar 

  15. X. Zhao, R. Rapp, Nucl. Phys. A 859, 114 (2011)

    Article  ADS  Google Scholar 

  16. X. Du, R. Rapp, M. He, Phys. Rev. C 96, 054901 (2017)

    Article  ADS  Google Scholar 

  17. S. Cho, S.H. Lee, Phys. Rev. C 88, 054901 (2013)

    Article  ADS  Google Scholar 

  18. L. Abreu, K. Khemchandani, A. Martinez Torres, F. Navarra, M. Nielsen, Phys. Lett. B 761, 303 (2016)

    Article  ADS  Google Scholar 

  19. J. Hong, S. Cho, T. Song, S.H. Lee, Phys. Rev. C 98, 014913 (2018)

    Article  ADS  Google Scholar 

  20. X. Du, R. Rapp, Nucl. Phys. A 943, 147 (2015)

    Article  ADS  Google Scholar 

  21. S. Acharya et al., ALICE, JHEP 04, 108 (2018)

  22. M. He, R. Rapp, Phys. Lett. B 795, 117 (2019)

    Article  ADS  Google Scholar 

  23. M. Cleven, V.K. Magas, A. Ramos, Phys. Lett. B 799, 135050 (2019)

    Article  Google Scholar 

  24. C. Fuchs, B. Martemyanov, A. Faessler, M. Krivoruchenko, Phys. Rev. C 73, 035204 (2006)

    Article  ADS  Google Scholar 

  25. M. He, R.J. Fries, R. Rapp, Phys. Lett. B 701, 445 (2011)

    Article  ADS  Google Scholar 

  26. F. Brazzi, B. Grinstein, F. Piccinini, A.D. Polosa, C. Sabelli, Phys. Rev. D 84, 014003 (2011)

    Article  ADS  Google Scholar 

  27. E.G. Ferreiro, J.-P. Lansberg, JHEP 10, 094 (2018). (Erratum: JHEP 03, 063 (2019))

    Article  ADS  Google Scholar 

  28. E. Shuryak, I. Zahed, Phys. Rev. D 69, 046005 (2004)

    Article  ADS  Google Scholar 

  29. E. Braaten, L.-P. He, K. Ingles (2019), arXiv:1908.02807

Download references

Acknowledgements

This work has been supported by the U.S. National Science Foundation under Grant No. PHY-1913286 and REU grant no. PHY-1659847, and by the TAMU Cyclotron Institute’s Research Development (CIRD) program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biaogang Wu.

Additional information

Communicated by Rishi Sharma

The original online version of this article was revised due to a retrospective Open Access cancellation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, B., Du, X., Sibila, M. et al. \(X(3872)\)transport in heavy-ion collisions. Eur. Phys. J. A 57, 122 (2021). https://doi.org/10.1140/epja/s10050-021-00435-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00435-6

Navigation