Skip to main content

Advertisement

Log in

Experimental investigation on the cooling performance of polystyrene encapsulated n-Docosane based nanofluid in mini channel heat sink

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The present work focusses on the comparative study of cooling performance of nano encapsulated phase change material (nanoPCM) based heat transfer fluid (PCM nanofluid) and deionized water in a minichannel heat sink (MCHS) with a hydraulic diameter of 2.6 mm. Polystyrene encapsulated n-Docosane was synthesised by mini emulsion polymerisation. The melting point and latent heat of nanoPCM was found to be 42.6 °C and 180.6 J/g respectively. PCM nanofluid with concentrations ranging from 0.6 to 1.5 vol.% was prepared by dispersing nanoPCM in deionized water. High zeta potential values indicated excellent suspension stability of PCM nanofluid. Viscosity of PCM nanofluid increased slightly, whereas thermal conductivity and density were comparable to deionized water. Experiments were conducted at different flow rates (75–450 mL/min) in the laminar flow regime under uniform heat flux of 2.6 W/cm2. Even though, PCM nanofluid at 0.7 vol.% showed an enhancement in heat transferup to 44% at 225 mL/min, as compared to water, pumping power increased up to 17%. However, the Figure of Merit values greater than unity shows the insignificance of increase in pumping power over heat transfer enhancement obtained for PCM nanofluid. The improved cooling performance at low flow rates makes PCM nanofluid a propitious coolant over conventional fluids for electronics cooling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Availability of data and materials

NA

Code availability

NA

Abbreviations

\( \overline{h} \) :

Average heat transfer coefficient (W/m2K)

\( \overline{Nu} \) :

Average Nusselt number

Q :

Heat energy (W)

A :

Area (m2)

T :

Temperature (K)

k :

Thermal conductivity (W/m K)

q flux :

Heat flux (W/m2)

c p :

Specific heat (kJ/kg K)

\( \dot{m} \) :

Mass flow rate (kg/s)

P :

Power (W)

V :

Voltage (V)

I :

Current (A)

Q loss :

Heat loss (W)

p :

Pressure (Pa)

D h :

Hydraulic diameter (m)

u :

Flow velocity (m/s)

z :

Vertical distance (m)

L :

Characteristic length (m)

n :

Number of channels (m)

P m :

Pumping power (W)

R :

Thermal resistance (K/W)

ρ :

Density (kg/m3)

μ :

Dynamic viscosity (Pa.s)

Nu :

Nusselt number

Re :

Reynolds number

Pr :

Prandtl number

f :

Fluid

in :

Inlet

out :

Outlet

w :

Wall

cond :

Conduction

conv :

Convection

nf :

Nanofluid

bf :

base fluid

ch :

Channel

w :

Width

h :

Height

abs :

Absorbed

PCM:

Phase change material

PCMNF:

Phase change material based nanofluid

DI:

Deionized

TEM:

Transmission electron microscope

PSA:

Particle size analyser

FT-IR:

Fourier transform infrared

DSC:

Differential scanning calorimetry

FOM:

Figure of merit

MCHS:

Minichannel heat sink

References

  1. Kandlikar SG, Grande WJ (2003) Evolution of microchannel flow passages–thermohydraulic performance and fabrication technology. Heat Transfer Eng 24(1):3–17. https://doi.org/10.1080/01457630304040

    Article  Google Scholar 

  2. Dixit T, Ghosh I (2015) Review of micro- and mini-channel heat sinks and heat exchangers for single phase fluids. Renew Sust Energ Rev 41:1298–1311

    Article  Google Scholar 

  3. Khoshvaght-Aliabadi M, Sahamiyan M (2016) Performance of nanofluid flow in corrugated minichannels heat sink (CMCHS). Energy Convers Manag 108:297–308. https://doi.org/10.1016/j.enconman.2015.11.026

    Article  Google Scholar 

  4. Xie XL, Liu ZJ, He YL, Tao WQ (2009) Numerical study of laminar heat transfer and pressure drop characteristics in a water-cooled minichannel heat sink. Appl Therm Eng 29:64–74. https://doi.org/10.1016/j.applthermaleng.2008.02.002

    Article  Google Scholar 

  5. Dang T, Teng JT (2011) Comparisons of the heat transfer and pressure drop of the microchannel and minichannel heat exchangers. Heat Mass Transf 47:1311–1322. https://doi.org/10.1007/s00231-011-0793-9

    Article  Google Scholar 

  6. Keblinski P, Prasher R, Eapen J (2008) Thermal conductance of nanofluids: is the controversy over ? J Nanopart Res 10:1089–1097. https://doi.org/10.1007/s11051-007-9352-1

    Article  Google Scholar 

  7. Colangelo G, Favale E, Milanese M, De Risi A, Laforgia D (2017) Cooling of electronic devices : Nanofluids contribution. Appl Therm Eng 127:421–435. https://doi.org/10.1016/j.applthermaleng.2017.08.042

    Article  Google Scholar 

  8. Roberts NA, Walker DG (2010) Convective performance of Nano fluids in commercial electronics cooling systems. Appl Therm Eng 30:2499–2504. https://doi.org/10.1016/j.applthermaleng.2010.06.023

    Article  Google Scholar 

  9. Murshed SMS, De Castro CAN (2017) A critical review of traditional and emerging techniques and fl uids for electronics cooling. Renew Sust Energ Rev 78:821–833. https://doi.org/10.1016/j.rser.2017.04.112

    Article  Google Scholar 

  10. Charunyakorn P, Sengupta S, Roy SK (1990) Forced convection heat transfer in microencapsulated phase change material slurries : flow in circular ducts. Int J Heat Mass Transf 34:819–833

    Article  Google Scholar 

  11. Goel SKRM, Sengupta S (1993) The performance of liquid heat sinks with phase change material suspensions. Int Commun Heat Mass Transf 20:69–77

    Article  Google Scholar 

  12. Yamagishi Y, Takeuchi H, Pyatenko AT, Kayukawa N (1999) Characteristics of microencapsulated PCM slurry as a heat-transfer fluid. AICHE J 45:696–707

    Article  Google Scholar 

  13. Han ZH, Cao FY, Yang B (2008) Synthesis and thermal characterization of phase-changeable indium / polyalphaolefin nanofluids. Appl Phys Lett 92(243104):1–3. https://doi.org/10.1063/1.2944914

    Article  Google Scholar 

  14. Sarı A, Alkan C, Biçer A, Bilgin C (2014) Micro / nanoencapsulated n -nonadecane with poly ( methyl methacrylate ) shell for thermal energy storage. Energy Conversion Manag 86:614–621. https://doi.org/10.1016/j.enconman.2014.05.092

    Article  Google Scholar 

  15. Hong Y, Ding S, Wu W, Hu J, Voevodin AA, Gschwender L, Snyder E, Chow L, Su M (2010) Enhancing heat capacity of colloidal suspension using nanoscale encapsulated phase-change materials for heat transfer. ACS Appl Mater Interfaces 2:1685–1691. https://doi.org/10.1021/am100204b

    Article  Google Scholar 

  16. Delgado M, Lázaro A, Peñalosa C, Zalba B (2014) Experimental analysis of the influence of microcapsule mass fraction on the thermal and rheological behavior of a PCM slurry. Appl Therm Eng 63:11–22. https://doi.org/10.1016/j.applthermaleng.2013.10.011

    Article  Google Scholar 

  17. Liu C, Rao Z, Zhao J, Huo Y, Li Y (2015) Review on nanoencapsulated phase change materials: preparation, characterization and heat transfer enhancement. Nano Energy 13:814–826. https://doi.org/10.1016/j.nanoen.2015.02.016

    Article  Google Scholar 

  18. Doruk S, Şara ON, Karaipekli A, Yap S (2017) Heat transfer performance of water and Nanoencapsulated n -nonadecane based Nanofluids in a double pipe heat exchanger. Heat Mass Transf 53:1–10. https://doi.org/10.1007/s00231-017-2072-x

    Article  Google Scholar 

  19. Jyothi NVN, Prasanna PM, Sakarkar SN, Prabha KS, Ramaiah PS, Srawan GY (2010) Microencapsulation techniques , factors influencing encapsulation efficiency. J Microencapsul 27:187–197. https://doi.org/10.3109/02652040903131301

    Article  Google Scholar 

  20. Mo S, He L, Jia L, Chen Y, Cheng Z (2020) Thermophysical properties of a novel Nanoencapsulated phase change material. Int J Thermophys 41:1–12. https://doi.org/10.1007/s10765-020-02641-8

    Article  Google Scholar 

  21. Salunkhe PB, Shembekar PS (2012) A review on effect of phase change material encapsulation on the thermal performance of a system. Renew Sust Energ Rev 16:5603–5616. https://doi.org/10.1016/j.rser.2012.05.037

    Article  Google Scholar 

  22. Rao Y, Dammel F, Stephan P, Lin G (2007) Convective heat transfer characteristics of microencapsulated phase change material suspensions in minichannels. Heat Mass Transf 44:175–186. https://doi.org/10.1007/s00231-007-0232-0

    Article  Google Scholar 

  23. Dammel F, Stephan P (2012) Heat transfer to suspensions of microencapsulated phase change material flowing through Minichannels. J Heat Transf 134(020907):1–8. https://doi.org/10.1115/1.4005062

    Article  Google Scholar 

  24. Ho C, Chen W, Yan W (2013) Experimental study on cooling performance of minichannel heat sink using water-based MEPCM particles. Int Commun Heat Mass Transf 48:67–72. https://doi.org/10.1016/j.icheatmasstransfer.2013.08.023

    Article  Google Scholar 

  25. Ho CJ, Chen WC, Yan WM (2014) Correlations of heat transfer effectiveness in a minichannel heat sink with water-based suspensions of Al2O3 nanoparticles and/or MEPCM particles. Int J Heat Mass Transf 69:293–299. https://doi.org/10.1016/j.ijheatmasstransfer.2013.10.030

    Article  Google Scholar 

  26. Kong M, Alvarado JL, Terrell W, Thies C (2016) Performance characteristics of microencapsulated phase change material slurry in a helically coiled tube. Int J Heat Mass Transf 101:901–914. https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.047

    Article  Google Scholar 

  27. Roberts NS, Al-Shannaq R, Kurdi J, Al-Muhtaseb SA, Farid MM (2017) Efficacy of using slurry of metal-coated microencapsulated PCM for cooling in a micro-channel heat exchanger. Appl Therm Eng 122:11–18. https://doi.org/10.1016/j.applthermaleng.2017.05.001

    Article  Google Scholar 

  28. Liu C, Ma Z, Wang J, Li Y, Rao Z (2017) Experimental research on flow and heat transfer characteristics of latent functional thermal fluid with microencapsulated phase change materials. Int J Heat Mass Transf 115:737–742. https://doi.org/10.1016/j.ijheatmasstransfer.2017.07.107

    Article  Google Scholar 

  29. Rao JP, Geckeler KE (2011) Polymer nanoparticles : preparation techniques and size-control parameters. Prog Polym Sci 36:887–913. https://doi.org/10.1016/j.progpolymsci.2011.01.001

    Article  Google Scholar 

  30. Fuensanta M, Paiphansiri U, Romero-Sánchez MD, Guillem C, López-Buendía ÁM, Landfester K (2013) Thermal properties of a novel nanoencapsulated phase change material for thermal energy storage. Thermochim Acta 565:95–101. https://doi.org/10.1016/j.tca.2013.04.028

    Article  Google Scholar 

  31. Zhang GH, Bon SAF, Zhao CY (2012) Synthesis , characterization and thermal properties of novel nanoencapsulated phase change materials for thermal energy storage. Sol Energy 86:1149–1154. https://doi.org/10.1016/j.solener.2012.01.003

    Article  Google Scholar 

  32. Fang Y, Yu H, Wan W, Gao X, Zhang Z (2013) Preparation and thermal performance of polystyrene / n-tetradecane composite nanoencapsulated cold energy storage phase change materials. Energy Convers Manag 76:430–436. https://doi.org/10.1016/j.enconman.2013.07.060

    Article  Google Scholar 

  33. Fang Y, Kuang S, Gao X, Zhang Z (2009) Preparation of nanoencapsulated phase change material as latent functionally. J Phys D Appl Phys 42(035407):1–8. https://doi.org/10.1088/0022-3727/42/3/035407

    Article  Google Scholar 

  34. Chen Z, Yu F, Zeng X, Zhang Z (2012) Preparation , characterization and thermal properties of nanocapsules containing phase change material n -dodecanol by miniemulsion polymerization with polymerizable emulsifier. Appl Energy 91:7–12. https://doi.org/10.1016/j.apenergy.2011.08.041

    Article  Google Scholar 

  35. Fang Y, Liu X, Liang X, Liu H, Gao X, Zhang Z (2014) Ultrasonic synthesis and characterization of polystyrene / n-dotriacontane composite nanoencapsulated phase change material for thermal energy storage. Appl Energy 132:551–556. https://doi.org/10.1016/j.apenergy.2014.06.056

    Article  Google Scholar 

  36. De Castro PF, Shchukin DG (2015) New polyurethane / Docosane microcapsules as phase-change materials for thermal energy storage. Chem Eur J 21:11174–11179. https://doi.org/10.1002/chem.201500666

    Article  Google Scholar 

  37. Shchukina EM, Graham M, Zheng Z, Shchukin DG (2018) Nanoencapsulation of phase change materials for advanced thermal energy storage systems. Chem Soc Rev 47:4156–4175. https://doi.org/10.1039/C8CS00099A

    Article  Google Scholar 

  38. Wu W, Bostanci H, Chow LC, Ding SJ, Hong Y, Su M, Kizito JP, Gschwender L, Snyder CE (2011) Jet impingement and spray cooling using slurry of nanoencapsulated phase change materials. Int J Heat Mass Transf 54:2715–2723. https://doi.org/10.1016/j.ijheatmasstransfer.2011.03.022

    Article  Google Scholar 

  39. Wu W, Bostanci H, Chow LC, Hong Y, Wang CM, Su M, Kizito JP (2013) Heat transfer enhancement of PAO in microchannel heat exchanger using nano-encapsulated phase change indium particles. Int J Heat Mass Transf 58:348–355. https://doi.org/10.1016/j.ijheatmasstransfer.2012.11.032

    Article  Google Scholar 

  40. Seyf HR, Zhou Z, Ma HB, Zhang Y (2013) Three dimensional numerical study of heat-transfer enhancement by nano-encapsulated phase change material slurry in microtube heat sinks with tangential impingement. Int J Heat Mass Transf 56:561–573. https://doi.org/10.1016/j.ijheatmasstransfer.2012.08.052

    Article  Google Scholar 

  41. C.J. Ho, S. Hsu, S. Rashidi, W. Yan (2020) Water-based nano-PCM emulsion flow and heat transfer in divergent mini-channel heat sink — an experimental investigation. Int J Heat Mass Transf 146: 118861 1–11. doi:https://doi.org/10.1016/j.ijheatmasstransfer.2019.119086

  42. Joseph M, Sajith V (2019) An investigation on heat transfer performance of polystyrene encapsulated n-octadecane based nano fluid in square channel. Appl Therm Eng 147:756–769. https://doi.org/10.1016/j.applthermaleng.2018.10.120

    Article  Google Scholar 

  43. Kuravi S, Du J, Chow LC (2010) Encapsulated phase change material slurry flow in manifold microchannels. J Thermophys Heat Transf 24:364–373. https://doi.org/10.2514/1.44276

    Article  Google Scholar 

  44. Rajabifar B (2015) Enhancement of the performance of a double layered microchannel heatsink using PCM slurry and nanofluid coolants. Int J Heat Mass Transf 88:627–635. https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.007

    Article  Google Scholar 

  45. Taylor JR (1997) Introduction to error analysis 2ed.pdf

  46. Vallar S, Houivet D, El Fallah J, Kervadec D, Haussonne J (1999) Oxide slurries stability and powders dispersion : optimization with zeta potential and rheological measurements. J Eur Ceram Soc 19:1017–1021

    Article  Google Scholar 

  47. Kandlikar SG, Garimella S, Li D, Colin S, King MR (2006) Heat Transfer and Fluid Flow in Minichannels and Microchannels, 1st edn 2006 Elsevier Ltd. ISBN: 0-0804-4527-6

    Google Scholar 

  48. Lee PS, Garimella SV, Liu D (2005) Investigation of heat transfer in rectangular microchannels. Int J Heat Mass Transf 48:1688–1704

    Article  Google Scholar 

  49. Ho CJ, Chen WC (2013) An experimental study on thermal performance of Al2O3/water nanofluid in a minichannel heat sink. Appl Therm Eng 50:516–522

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V Sajith.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joseph, M., Jitheesh, E.V. & Sajith, V. Experimental investigation on the cooling performance of polystyrene encapsulated n-Docosane based nanofluid in mini channel heat sink. Heat Mass Transfer 57, 1717–1735 (2021). https://doi.org/10.1007/s00231-021-03068-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-021-03068-z

Keywords

Navigation