Skip to main content
Log in

Thermal Resistance for Au–Water and Ag–Water Interfaces: Molecular Dynamics Simulations

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Thermal Resistance for gold (Au)–water and silver (Ag)–water interfaces are calculated using a reversed non-equilibrium molecular dynamics simulation. Temperature and heat flow dependence of Interfacial thermal resistance (ITR) based on a solid–liquid–solid nano channel system are explained. The results are compared with existing literature to investigate the effect of different force fields for both metal atoms and water molecules, and also to demonstrate the application of the molecular dynamics (MD) simulation to different systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.-L. Barrat, F. Chiaruttini, Mol. Phys. 101, 1605–1610 (2003)

    Article  ADS  Google Scholar 

  2. B. Kim, Chem. Phys. Lett. 554, 77–81 (2012)

    Article  ADS  Google Scholar 

  3. S.A. Hollingsworth, R.O. Dror, Neuron 99, 1129–1143 (2018)

    Article  Google Scholar 

  4. P. Zhang, P. Yuan, X. Jiang, S. Zhai, J. Zeng, Y. Xian, H. Qin, D. Yang, Small 14, 1702769 (2018)

    Article  Google Scholar 

  5. B.H. Kim, A. Beskok, T. Cagin, J. Chem. Phys. 129 (2008)

  6. Q. Li, C. Liu, Int. J. Heat Mass Transf. 55, 8088–8092 (2012)

    Article  Google Scholar 

  7. T.Q. Vo, B. Kim, Int. J. Precis. Eng. Manuf. 16, 1341–1346 (2015)

    Article  Google Scholar 

  8. A.T. Pham, M. Barisik, B. Kim, Int. J. Heat Mass Transf. 97, 422–431 (2016)

    Article  Google Scholar 

  9. J. Vera, Y. Bayazitoglu, Int. J. Heat Mass Transf. 86, 433–442 (2015)

    Article  Google Scholar 

  10. A. Stukowski, Model. Simul. Mater. Sci. Eng. 18 (2009)

  11. D.J. Evans, B.L. Holian, J. Chem. Phys. 83, 7 (1985)

    Article  Google Scholar 

  12. F. Müller-Plathe, J. Chem. Phys. 106, 6082–6085 (1997)

    Article  ADS  Google Scholar 

  13. M. Zhang, E. Lussetti, L.E.S. de Souza, F. Müller-Plathe, J. Phys. Chem. B 109, 15060–15067 (2005)

    Article  Google Scholar 

  14. S. Plimpton, J. Comput. Phys. 117, 1–19 (1995)

    Article  ADS  Google Scholar 

  15. G. Song, C. Min, Mol. Phys. 111, 903–908 (2013)

    Article  ADS  Google Scholar 

  16. S. Ge, M. Chen, Int. J. Thermophys. 34, 64–77 (2013)

    Article  ADS  Google Scholar 

  17. K.M. Issa, A.A. Mohamad, Phys. Rev. E 85 (2012)

  18. G. Nagy, M.C. Gordillo, E. Guàrdia, J. Martí, J. Phys. Chem. B 111, 12524–12530 (2007)

    Article  Google Scholar 

  19. L. Fritz, D. Hofmann, Polymer 38, 1035–1045 (1997)

    Article  Google Scholar 

  20. L. Hu, T. Desai, P. Keblinski, Phys. Rev. B 83 (2011)

  21. M. Waldman, A.T. Hagler, J. Comput. Chem. 14, 1077–1084 (1993)

    Article  Google Scholar 

  22. C.Y. Soong, T.H. Yen, P.Y. Tzeng, Phys. Rev. E 76 (2007)

  23. L. Xue, P. Keblinski, S.R. Phillpot, S.U.-S. Choi, J.A. Eastman, J. Chem. Phys. 118, 337–339 (2003)

    Article  ADS  Google Scholar 

  24. D.P. Sellan, E.S. Landry, J.E. Turney, A.J.H. McGaughey, C.H. Amon, Phys. Rev. B 81 (2010)

  25. C.-D. Wu, L.-M. Kuo, S.-J. Lin, T.-H. Fang, S.-F. Hsieh, Comput. Mater. Sci. 53, 25–30 (2012)

    Article  Google Scholar 

  26. Y. Wang, J.M. Lamim Ribeiro, P. Tiwary, Curr. Opin. Struct. Biol. 61, 139–145 (2020)

    Article  Google Scholar 

  27. Y.-J. Wu, L. Fang, Y. Xu, NPJ Comput. Mater. 5, 56 (2019)

    Article  ADS  Google Scholar 

  28. H. Yang, Z. Zhang, J. Zhang, X. Cheng Zeng, Nanoscale 10, 19092–19099 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

M. M. Aksoy was financially supported by Turkish Ministry of National Education. The authors also gratefully acknowledge partial support from the Department of Mechanical Engineering at Rice University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yildiz Bayazitoglu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aksoy, M.M., AlHosani, M. & Bayazitoglu, Y. Thermal Resistance for Au–Water and Ag–Water Interfaces: Molecular Dynamics Simulations. Int J Thermophys 42, 87 (2021). https://doi.org/10.1007/s10765-021-02840-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-021-02840-x

Keywords

Navigation