Skip to main content
Log in

Growth of rGO nanostructures via facile wick and oil flame synthesis for environmental remediation

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Oil spills into ocean or coastal waters can result in significant damage to the environment via pollution of aquatic ecosystems. Absorbents based on reduced graphene oxide (rGO) foams have the capacity to remove minor or major oil spills. However, conventional chemical synthesis of rGO often uses petrochemical precursors, potentially harmful chemicals, and requires special processing conditions that are expensive to maintain. In this work, an alternative cost-effective and environmentally friendly approach suitable for large-scale production of high-quality rGO directly from used cooking sunflower oil is discussed. Thus, produced flaky graphene structures are effective in absorbing used commercial sunflower oil and engine oil, via monolayer physisorption in the case of used sunflower and engine oils facilitated by van der Waals forces, π–π stacking and hydrophobic interactions, π-cation (H+) stacking and radical scavenging activities. From adsorption kinetic models, first-order kinetics provides a better fit for used sunflower oil adsorption (R2 = 0.9919) and second-order kinetics provides a better fit for engine oil adsorption (R2 = 0.9823). From intra-particle diffusion model, R2 for USO is 0.9788 and EO is 0.9851, which indicates that both used sunflower and engine oils adsorption processes follow an intra-particle diffusion mechanism. This study confirms that waste-derived rGO could be used for environmental remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Mathew EE, Balachandran M (2021) Crumpled and porous graphene for supercapacitor applications: a short review. Carbon Lett. https://doi.org/10.1007/s42823-021-00229-2 (in press)

    Article  Google Scholar 

  2. Kumar A, Sharma K, Dixit AR (2020) A review on the mechanical properties of polymer composites reinforced by carbon nanotubes and graphene. Carbon Lett. https://doi.org/10.1007/s42823-020-00161-x

    Article  Google Scholar 

  3. Levchenko I, Bazaka K, Belmonte T, Keidar M, Xu S (2018) Advanced materials for next generation spacecraft. Adv Mater 30:1802201. https://doi.org/10.1002/adma.201802201

    Article  CAS  Google Scholar 

  4. Gupta MK (2020) Analysis of tribological behavior of Al/Gr/MoS2 surface composite fabricated by friction stir process. Carbon Lett 30:399–408. https://doi.org/10.1007/s42823-019-00109-w

    Article  Google Scholar 

  5. Gupta N, Gupta SM, Gupta SK, Sharma (2019) Carbon nanotubes: synthesis, properties and engineering applications. Carbon Lett 29:419–447. https://doi.org/10.1007/s42823-019-00068-2

    Article  Google Scholar 

  6. Levchenko I, Xu S, Mazouffre S, Lev D, Pedrini D, Goebel D, Garrigues L, Taccogna F, Bazaka K (2020) Perspectives, frontiers, and new horizons for plasma-based space electric propulsion. Phys Plasmas 27:020601. https://doi.org/10.1063/1.5109141

    Article  CAS  Google Scholar 

  7. Levchenko I, Xu S, Wu YL, Bazaka K (2020) Hopes and concerns for astronomy of satellite constellations. Nat Astron 4:1012–1014. https://doi.org/10.1038/s41550-020-1141-0

    Article  Google Scholar 

  8. Levchenko I, Baranov O, Fang J, Cherkun O, Xu S, Bazaka K (2021) Focusing plasma jets to achieve high current density: feasibility and opportunities for applications in debris removal and space exploration. Aerospace Sci Technol 108:106343. https://doi.org/10.1016/j.ast.2020.106343

    Article  Google Scholar 

  9. Kumari P, Alam M, Siddiqi WA (2019) Usage of nanoparticles as adsorbents for waste water treatment: an emerging trend. Sustain Mater Technol 22:e00128. https://doi.org/10.1016/j.susmat.2019.e00128

    Article  CAS  Google Scholar 

  10. Liang S-X, Zhang W, Zhang L, Wang W, Zhanga L-C (2019) Remediation of industrial contaminated water with arsenic and nitrate by mass-produced Fe-based metallic glass: toward potential industrial applications. Sustain Mater Technol 22:e00126. https://doi.org/10.1016/j.susmat.2019.e00126

    Article  CAS  Google Scholar 

  11. Litvina M, Todoruk TR, Langford CH (2003) Composition and structure of agentsresponsible for development of water repellency in soils following oil contamination. Environ Sci Technol 37:2883–2888. https://doi.org/10.1021/es026296l

    Article  CAS  Google Scholar 

  12. Wan Y, Wang B, Khim JS, Hong S, Shim WJ, Hu J (2014) Naphthenic acids in coastal sediments after the hebei spirit oil spill: a Potential indicator for oil contamination. Environ Sci Technol 48:4153–4162. https://doi.org/10.1021/es405034y

    Article  CAS  Google Scholar 

  13. Barrera G, Pizzimenti S, Ciamporcero ES, Daga M, Ullio C, Arcaro A, Cetrangolo GP, Ferretti C, Dianzani C, Lepore A, Gentile F (2015) Role of 4-hydroxynonenal-protein adducts in human diseases. ARS Antioxid Redox Sign 22:1681–1702. https://doi.org/10.1089/ars.2014.6166

    Article  CAS  Google Scholar 

  14. Domenico D, Tramutola F, Butterfield A (2017) Role of 4-hydroxy-2-nonenal HNE in the pathogenesis of alzheimer disease and other selected age-related neurodegenerative disorders. Free Radical Biol Med 111:253–261. https://doi.org/10.1016/j.freeradbiomed.2016.10.490

    Article  CAS  Google Scholar 

  15. LoPachin RM, Gavin T (2014) Molecular mechanisms of aldehyde toxicity: a chemical perspective. Chem Res Toxicol 27:1081–1091. https://doi.org/10.1021/tx5001046

    Article  CAS  Google Scholar 

  16. Barrera G, Pizzimenti S, Dianzani MU (2008) Lipid peroxidation: control of cell proliferation, cell differentiation and cell death. Mol Aspects Med 29:1–8. https://doi.org/10.1016/j.mam.2007.09.012

    Article  CAS  Google Scholar 

  17. Esterbauer H, Schaur RJ, Zollner H (1991) Chemistry and biochemistry of 4- hydroxynonenal, malonaldehyde and related aldehydes. Free Radical Biol Med 11:81–218. https://doi.org/10.1016/0891-5849(91)90192-6

    Article  CAS  Google Scholar 

  18. Ma L, Liu G, Cheng W, Liu X, Liu H, Wang Q, Mao G, Cai X, Brennan C, Brennan MA (2020) Formation of malondialdehyde, 4-hydroxy-hexenal and 4-hydroxynonenal during deep-frying of potato sticks and chicken breast meat in vegetable oil. Int J Food Sci Technol 55:1833–1842. https://doi.org/10.1111/ijfs.14462

    Article  CAS  Google Scholar 

  19. Abdel-Shafy HI, Mansour MSM (2016) A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egypt J Petrol 25:107–123. https://doi.org/10.1016/j.ejpe.2015.03.011

    Article  Google Scholar 

  20. Chandio I, Janjhi FA, Memon AA, Memon S, Ali Z, Thebo KH, Pirzado AAA, Hakro AA, Khan WS (2021) Ultrafast ionic and molecular sieving through graphene oxide based composite membranes. Desalination 500:114848. https://doi.org/10.1016/j.desal.2020.114848

    Article  CAS  Google Scholar 

  21. Janjhi FA, Chandio I, Memon AA, Ahmed Z, Thebo KH, Pirzado AAA, Hakro AA, Iqbal M (2020) Functionalized graphene oxide based membranes for ultrafast molecular separation. Sep Purif Technol 1:117969. https://doi.org/10.1016/j.seppur.2020.117969

    Article  CAS  Google Scholar 

  22. Kumar S, Levchenko I, Ostrikov KK, McLaughlin JA (2012) Plasma-enabled, catalyst-free growth of carbon nanotubes on mechanically-written Si features with arbitrary shape. Carbon 50:325–329. https://doi.org/10.1016/j.carbon.2011.07.060

    Article  CAS  Google Scholar 

  23. Han ZJ, Yick S, Levchenko I, Tam E, Yajadda MMA, Kumar S, Martin PJ, Furman S, Ostrikov K (2011) Controlled synthesis of a large fraction of metallic single-walled carbon nanotube and semiconducting carbon nanowire networks. Nanoscale 3:3214–3220. https://doi.org/10.1039/C1NR10327J

    Article  CAS  Google Scholar 

  24. Alancherry S, Jacob MV, Prasad K, Joseph J, Bazaka O, Neupane R, Varghese OK, Baranov O, Xu S, Levchenko I, Bazaka K (2020) Tuning and fine morphology control of natural resource-derived vertical graphene. Carbon 159:668–685. https://doi.org/10.1016/j.carbon.2019.10.060

    Article  CAS  Google Scholar 

  25. Thebo KH, Qian X, Wei Q, Zhang Q, Cheng H-M, Ren W (2018) Reduced graphene oxide/metal oxide nanoparticles composite membranes for highly efficient molecular separation. J Mater Sci Technol 34:1481–1486. https://doi.org/10.1016/j.jmst.2018.05.008

    Article  Google Scholar 

  26. Suresh SP, Lekshmi GS, Kirupha SD, Ariraman M, Bazaka O, Levchenko I, Bazaka K, Mandhakini M (2019) Superhydrophobic fluorine-modified cerium-doped mesoporous carbon as an efficient catalytic platform for photo-degradation of organic pollutants. Carbon 147:323–333. https://doi.org/10.1016/j.carbon.2019.02.074

    Article  CAS  Google Scholar 

  27. Celebi K, Buchheim J, Wyss RM, Droudian A, Gasser P, Shorubalko I, Kye J-I, Lee C, Park HG (2014) Ultimate permeation across atomically thin porous graphene. Science 344:289–292. https://doi.org/10.1039/C7TA04692H

    Article  CAS  Google Scholar 

  28. Baig N, Alghunaimi FI, Saleh T (2019) Hydrophobic and oleophilic carbon nanofiber impregnated styrofoam for oil and water separation: a green technology. Chem Eng J 360:1613–1622. https://doi.org/10.1016/j.cej.2018.10.042

    Article  CAS  Google Scholar 

  29. Nair RR, Wu HA, Jayaram PN, Grigorieva IV, Geim AK (2012) Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science 335:442–444. https://doi.org/10.1021/acs.jpclett.5b00914

    Article  CAS  Google Scholar 

  30. Bazaka K, Jacob MV, Ostrikov K (2016) Sustainable life cycles of natural-precursor-derived nanocarbons. Chem Rev 116:163–214. https://doi.org/10.3390/ma12193099

    Article  CAS  Google Scholar 

  31. The USA environmental protection agency science matters research impacts report 2018, page 17 (https://www.epa.gov/research/epa-science-matters-research-impacts-2018), (Accessed Oct 2020).

  32. Antwi-Akomeah S, Fei-Baffoe B, Belford EJD, Borigu M (2018) Hydrocarbon contaminated water remediation using a locally constructed multi-stage bioreactor incorporated with media filtration. Global J Environ Sci Manag 4:413–426. https://doi.org/10.22034/gjesm.2018.04.003

    Article  CAS  Google Scholar 

  33. Zhang Q, Qian X, Thebo KH, Cheng H-M, Ren W (2018) Controlling reduction degree of graphene oxide membranes for improved water permeance. Sci Bull 63:788–794. https://doi.org/10.1016/j.scib.2018.05.015

    Article  CAS  Google Scholar 

  34. Tamilselvi R, Ramesh M, Lekshmi GS, Bazaka O, Levchenko I, Bazaka K, Mandhakini M (2020) Graphene oxide-based supercapacitors from agricultural wastes: A step to mass production of highly efficient electrodes for electrical transportation systems. Renew Energy 151:731–739. https://doi.org/10.1016/j.renene.2019.11.072

    Article  CAS  Google Scholar 

  35. Sirignano M, Bartos D, Conturso M, Dunn M, D’Anna A, Masri A (2017) Detection of nanostructures and soot in laminar premixed flames. Combus Flame 176:299–308. https://doi.org/10.1016/j.combustflame.2016.10.009

    Article  CAS  Google Scholar 

  36. Verdugo I, Cruz JJ, Álvarez E, Reszka P, da Silva LFF, Fuentes A (2020) Candle flame soot sizing by planar time-resolved laser-induced incandescence. Sci Rep 10:11364. https://doi.org/10.1038/s41598-020-68256-z

    Article  CAS  Google Scholar 

  37. Singh G, Sharma M, Vaish R (2019) Tunable surface adsorption and wettability of candle soot coated on ferroelectric ceramics. J Adv Res 16:35–42. https://doi.org/10.1016/j.jare.2018.12.005

    Article  CAS  Google Scholar 

  38. Swapna MS, Menon PV, Anand AS, Soumya S, Sankararaman S (2017) Synthesis and characterization of carbon nano kajal. JOJ Mater Sci 1:555566. https://doi.org/10.19080/JOJMS.2017.01.555566

    Article  Google Scholar 

  39. Yang L, Fu H, Yang C, Tian W, Wu P, Jiang W (2019) Carbon soot with arbitrary wettability deposited on solid surface by ethanol flame method. Colloid Surface A 578:123576

    Article  CAS  Google Scholar 

  40. Tiwari RN, Ishihara M, Tiwari JN, Yoshimura M (2012) Flame-annealing assisted synthesis of graphene films from adamantine. J Mater Chem 22:15031. https://doi.org/10.1021/acsnano.5b05690

    Article  CAS  Google Scholar 

  41. Ramya AV, Mohan AN, Manoj B (2016) Wrinkled graphene: synthesis and characterization of few layer graphene-like nanocarbons from kerosene. Mater Sci Poland 34:330–336. https://doi.org/10.1515/msp-2016-0061

    Article  CAS  Google Scholar 

  42. Fopp-Spori D, Martin-Tanchereau P (2014) Contact angle measurementsn: "Biofouling methods”. John Wiley and Sons

    Google Scholar 

  43. Rudnick LR (2003) Lubricant additives. Chemistry and Application

    Book  Google Scholar 

  44. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3335424 (Accesse Mar 2021).

  45. Osman DI, Attia SK, Taman AR (2018) Recycling of used engine oil by different solvent. Egyptian J Petrol 27:221–225. https://doi.org/10.1016/j.ejpe.2017.05.010

    Article  Google Scholar 

  46. Mannu A, Vlahopoulou G, Urgeghe P, Ferro M, Del Caro A, Taras A, Garroni S, Rourke JP, Cabizza R, Petretto GL (2019) Variation of the chemical composition of waste cooking oils upon bentonite filtration. Resources 8:108. https://doi.org/10.3390/resources8020108

    Article  Google Scholar 

  47. Naz S, Sherazi ST, Talpur FN, Kara H, Uddin S, Khaskheli AR (2014) Chemical characterization of canola and sun fl ower oil deodorizer distillates. Pol J Food Nutr Sci 64:115–120. https://doi.org/10.2478/pjfns-2013-0008

    Article  CAS  Google Scholar 

  48. Abro R, Chen X, Harijan K, Dhakan ZA, Ammar M (2013) A comparative study of recycling of used engine oil using extraction by composite solvent, single solvent, and acid treatment methods. Internat Scholarly Res Notic 13:952589. https://doi.org/10.1155/2013/952589

    Article  CAS  Google Scholar 

  49. ASTM D3860 - 98 (2020). Standard practice for determination of adsorptive capacity of activated carbon by aqueous phase isotherm technique (https://www.astm.org/Standards/D3860.htm). (Accesed Oct 2020).

  50. Muhamad MH, Abdullah SRS, Hasan HA, Rahim RA, Bakar SNH, Ismail N, Halmi MIE (2018) Adsorption isotherm and kinetic studies of pentachlorophenol removal from aqueous solution onto coconut shell-based granular activated carbon. J Environ Sci Technol 11:68–78. https://doi.org/10.3923/jest.2018.68.78

    Article  CAS  Google Scholar 

  51. Chen X (2015) Modeling of experimental adsorption isotherm data. Information 6:14–22. https://doi.org/10.3390/info6010014

    Article  Google Scholar 

  52. Kandasamy A, Ramasamy T, Samrin A, Narayanasamy P, Mohan R, Bazaka O, Levchenko I, Bazaka K, Mohandas M (2020) Hierarchical doped gelatin-derived carbon aerogels: three levels of porosity for advanced supercapacitors. Nanomaterials 10:1178. https://doi.org/10.3390/nano10061178

    Article  CAS  Google Scholar 

  53. Cui P, Lee J, Hwang E, Lee H (2011) One-pot reduction of graphene oxide at subzero temperatures. Cheem Commun 47:12370–12372. https://doi.org/10.1039/c1cc15569e

    Article  CAS  Google Scholar 

  54. Je JH, Lee JY (1985) The influence of deposition mechanism on the microstructure of pyrolytic carbon deposited in a tumbling bed. J Mater Sci 20:839–844. https://doi.org/10.1007/BF00585724

    Article  CAS  Google Scholar 

  55. Amaro-Gahete J, Benítez A, Otero R, Esquivel D, Jiménez-Sanchidrián C, Morales J, Caballero Á, Romero-Salguero FJ (2019) A comparative study of particle size distribution of graphene nanosheets synthesized by an ultrasound-assisted method. Nanomaterials 9:152

    Article  CAS  Google Scholar 

  56. Santini CA, Sebastian A, Marchiori C, Jonnalagadda VP, Dellmann L, Koelmans WW, Rossell MD, Rossel CP, Eleftheriou E (2015) Oxygenated amorphous carbon for resistive memory applications. Nat Commun 6:8600. https://doi.org/10.1038/ncomms9600

    Article  CAS  Google Scholar 

  57. Yano H, Cai N-S, Xu M, Verma RK, Rea W, Hoffman AF, Shi L, Javitch JA, Bonci A, Ferré S (2018) Gs- versus Golf-dependent functional selectivity mediated by the dopamine D1 receptor. Nat Commun 9:486. https://doi.org/10.1038/s41467-017-02606-w

    Article  CAS  Google Scholar 

  58. Sharma N, Sharma V, Jain Y, Kumari M, Gupta R, Sharma SK, Sachdev K (2017) Synthesis and characterization of graphene oxide (GO) and reduced graphene oxide (rGO) for gas sensing application. Macromol Symp. https://doi.org/10.1002/masy.201700006

    Article  Google Scholar 

  59. Fierro V, Torné-Fernández V, Montané D, Celzard A (2008) Adsorption of phenol onto activated carbons having different textural and surface properties. Micropor Mesop Mater 111:276–284. https://doi.org/10.3390/ijerph17030789

    Article  CAS  Google Scholar 

  60. Johnson CA, Patrick JW, Thomas KM (1986) Characterization of coal chars by Raman spectroscopy X-ray diffraction and reflectance measurements. Fuel 65:1284–1290. https://doi.org/10.1016/0016-2361(86)90243-7

    Article  CAS  Google Scholar 

  61. Hung K-H, Chan C-H, Wang H-W (2014) Aqueous only route toward graphene from graphite oxide. Renew Energ 66:150–158. https://doi.org/10.1021/nn1028967

    Article  CAS  Google Scholar 

  62. Okewale AO, Babayemi KA, Olalekan AP (2013) Adsorption isotherms and kinetics models of starchy adsorbents on uptake of water from ethanol/water systems. Int J Appl Sci Technol 3:35–42

    Google Scholar 

  63. Wachs IE, Roberts CA (2010) Monitoring surface metal oxide catalytic active sites with Raman spectroscopy. Chem Soc Rev 39:5002–5017. https://doi.org/10.1039/C0CS00145G

    Article  CAS  Google Scholar 

  64. Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Proc Biochem 34:451–465. https://doi.org/10.1016/S0032-9592(98)00112-5a

    Article  CAS  Google Scholar 

  65. Hu J, Zhu J, Ge S, Jiang C, Guo T, Peng T, Huang T, Xie L (2020) Hydrophobic and resilience graphene/chitosan composite aerogel for efficient oil−water separation. Surf Coat Technol 385:125361. https://doi.org/10.1016/j.surfcoat.2020.125361

    Article  CAS  Google Scholar 

  66. Songsaeng S, Thamyongkit P, Poompradu S (2019) Natural rubber/reduced-graphene oxide composite materials: morphological and oil adsorption properties for treatment of oil spills. J Adv Res 20:79–89. https://doi.org/10.1016/j.jare.2019.05.007

    Article  CAS  Google Scholar 

  67. Cheu S, Kong H, Song S, Johari K, Saman N, Yunus M, Mat H (2020) Separation of dissolved oil from aqueous solution by sorption onto acetylated lingo cellulosic biomass—equilibrium, kinetics and mechanism studies. J Environ Chem Eng 385:125361. https://doi.org/10.1016/j.jece.2015.12.028

    Article  CAS  Google Scholar 

  68. Hameed BH, Ahmad AA, Azi N (2007) Isotherms, kinetics and thermodynamics of acid dye adsorption on activated palm ash. Chem Eng J 133:195–203. https://doi.org/10.1016/j.cej.2007.01.032

    Article  CAS  Google Scholar 

  69. Ho YS, McKay G (1998) The kinetics of sorption of basic dyes from aqueous solution by sphagnum moss peat. Can J Chem Eng 76:822–827. https://doi.org/10.1002/cjce.5450760419

    Article  CAS  Google Scholar 

  70. Tan AW, Ahmad AL, Hameed BH (2009) Adsorption isotherms, kinetics, thermodynamics and desorption studies of 2, 4, 6-trichlorophenol on oil palm empty fruit bunch-based activated carbon. J Hazard Mater 164:473–482. https://doi.org/10.1016/j.jhazmat.2008.08.025

    Article  CAS  Google Scholar 

  71. Wang X, Liu B, Lu Q, Qu Q (2014) Graphene-based materials: fabrication and application for adsorption in analytical chemistry. J Chromatogr A 1362:1–15. https://doi.org/10.1016/j.chroma.2014.08.023

    Article  CAS  Google Scholar 

  72. Lv N, Wang X, Peng S, Zhang H, Luo L (2018) Study of the kinetics and equilibrium of the adsorption of oils onto hydrophobic jute fiber modified via the sol-gel method. Int J Environ Res Public Health 15:969. https://doi.org/10.3390/ijerph15050969

    Article  CAS  Google Scholar 

  73. Cheremisinoff NP (2002) Handbook of water and wastewater treatment technologies. Butterworth-Heinemann 1:576. https://doi.org/10.1016/B978-075067498-0/50000-0

    Article  Google Scholar 

  74. Ayotamuno M, Kogbara R, Ogaji S, Probert S (2006) Petroleum contaminated ground-water: remediation using activated carbon. App Energy 83:1258–1264. https://doi.org/10.1016/j.apenergy.2006.01.004

    Article  CAS  Google Scholar 

  75. Salehi K, Mowla D, Karimi G (2011) Removal of oil spills from salty waters by commercial organoclays. App Energy 33:1682–1687. https://doi.org/10.1080/01932691.2011.635506

    Article  CAS  Google Scholar 

  76. Guo H-L, Su P, Kang X, Ning S-K (2013) Synthesis and characterization of nitrogen-doped graphenehydrogelsby hydrothermal route with urea as reducing-doping agents. J Mater Chem A 1:2248. https://doi.org/10.1039/C2TA00887D

    Article  CAS  Google Scholar 

  77. Moazed H, Viraraghavan T (2005) Use of organo-clay/anthracite mixture in the separation of oil from oily waters. Energ Source 27:101–112. https://doi.org/10.1080/00908310490448145

    Article  CAS  Google Scholar 

  78. Moazed H, Viraraghavan T (2005) Practice periodical of hazardous. Tox Radioact Waste Manag 9:130–134. https://doi.org/10.1061/(ASCE)1090-025X(2005)9:4(205)

    Article  CAS  Google Scholar 

  79. Cai Z-X, Song X-H, Chen Y-Y, Wang Y-R, Chen X (2016) 3D nitrogen-doped graphene aerogel: a low-cost, facile prepared direct electrode for H2O2 sensing. Sens Actu B 222:567. https://doi.org/10.1016/j.snb.2015.08.094

    Article  CAS  Google Scholar 

  80. Sigma Aldrich: https://www.sigmaaldrich.com

  81. Wang W, Huang G, An C, Zhao S, Chen X, Zhang P (2018) Adsorption of anionic azo dyes from aqueous solution on cationic gemini surfactant-modified flax shives: synchrotron infrared, optimization and modeling studies. J Clean Prod 172:1986–1997. https://doi.org/10.1016/j.jclepro.2017.11.227

    Article  CAS  Google Scholar 

  82. Hailu SL, Nair BU, Mesfin RA, Diaz I, Tessema M (2017) Preparation and characterization of cationic surfactant modified zeolite adsorbent material for adsorption of organic and inorganic industrial pollutants. J Environ Chem Eng 5:3319–3329. https://doi.org/10.1016/j.jece.2017.06.039

    Article  CAS  Google Scholar 

  83. Jiménez-Castañeda M, Medina D (2017) Use of surfactant-modified zeolites and clays for the removal of heavy metals from water. Water 9:235. https://doi.org/10.3390/w9040235

    Article  CAS  Google Scholar 

  84. Leng L, Yuan X, Zeng G, Shao J, Chen X, Wu Z, Wang H, Peng X (2015) Surface characterization of rice husk bio-char produced by liquefaction and application for cationic dye (Malachite green) adsorption. Fuel 155:77–85. https://doi.org/10.1016/j.fuel.2015.04.019

    Article  CAS  Google Scholar 

  85. H. S. Fogler, Elements of Chemical Reaction Engineering, 4th Edition (1050 pages, Prentice Hall, 2006); Chapter 10: Catalysis and Catalytic Reactors. ISBN: 0130473944 9780130473943 0131278398 9780131278394

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mandhakini Mohandas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 615 KB)

Supplementary file2 (PDF 810 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lekshmi, G.S., Tamilselvi, R., Prasad, K. et al. Growth of rGO nanostructures via facile wick and oil flame synthesis for environmental remediation. Carbon Lett. 31, 763–777 (2021). https://doi.org/10.1007/s42823-021-00244-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-021-00244-3

Keywords

Navigation