Skip to main content

Advertisement

Log in

Char production with high-energy value and standardized properties from two types of biomass

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

In this paper, a new approach to the torrefaction process is proposed. The approach consists of obtaining a single torrefied product with an energy value and standardized physicochemical properties in the range of sub-bituminous coal from two types of waste: the cotton stalk and vine pruning. A multifactorial design was used to investigate the effect of temperature, time, and reaction atmosphere on the properties of the torrefied product (char). The process was optimized according to the mass and energy yield and the increase in the higher heating value (HHV). A series of physicochemical, kinetic, and microscopic analyses were carried out on the raw and torrefied biomass to evaluate the combustible properties. Char was obtained with an energy value in the range of sub-bituminous coal and with more uniform fuel properties concerning raw biomass. The optimal torrefaction conditions for cotton stalk were 6% O2–257.8°C–60 min and 0% O2–275°C–20 min for vine pruning. The HHV of the cotton stalk and vine pruning increased from 16.88 to 22.21 MJ kg−1 and from 17.01 to 22.43 MJ kg−1, respectively. The char from both residues presented similar O/C and H/C atomic ratios, and its value decreased compared with the raw biomass. Char is hydrophobic and easy to grind. Oxygen concentration played an essential role in reducing the time and temperature of torrefaction.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All relevant data are supplied within the manuscript.

Code availability

Not applicable.

References

  1. Bach QV, Skreiberg O (2016) Upgrading biomass fuels via wet torrefaction: a review and comparison with dry torrefaction. Renew Sust Energ Rev 54:665–677. https://doi.org/10.1016/j.rser.2015.10.014

    Article  Google Scholar 

  2. IEA (2019). International Energy Agency. Total energy supply (TES) by source for 2019. www.iea.org. Accessed on 12 March 2021.

  3. Masera O, Coralli F, García C et al (2011) La bioenergía en México. Situación actual y perspectivas, Red Mexicana de Bioenergía, AC, México. https://rembio.org.mx/wp-content/uploads/2020/12/CT4.pdf Accessed 6 June 2019.

  4. SENER (2020). Secretaría de Energía (Secretariat of Energy). Balance Nacional de Energía 2019. https://www.gob.mx/cms/uploads/attachment/file/618408/20210218_BNE.pdf. Accessed on 12 March 2021

  5. Montero G, Coronado MA, Torres R, Jaramillo BE, García C, Stoytcheva M, Vázquez AM, León JA, Lambert AA, Valenzuela E (2016) Higher heating value determination of wheat straw from Baja California, Mexico. Energy 109:612–619. https://doi.org/10.1016/j.energy.2016.05.011

    Article  Google Scholar 

  6. SIAP (2018). Servicio de Información Agroalimentaria y Pesquera. Producción Agrícola. Resumen Nacional por Estado. https://www.gob.mx/siap. Accessed 10 July 2019

  7. SAGARPA (2017). Secretaría de Agricultura, Ganadería, Desarrollo rural, Pesca y Alimentación Planeación Agrícola Nacional 2017-2030. http://www.sagarpa.mx. Accessed 10 July 2019

  8. Gemtos T, Tsiricoglou T (1999) Harvesting of cotton residue for energy production. Biomass Bioenergy 16(1):51–59. https://doi.org/10.1016/S0961-9534(98)00065-8

    Article  Google Scholar 

  9. Blasi CD, Tanzi V, Lanzetta M (1997) A study on the production of agricultural residues in Italy. Biomass Bioenergy 12(5):321–331. https://doi.org/10.1016/S0961-9534(96)00073-6

    Article  Google Scholar 

  10. Bisaglia C, Romano E (2018) Utilization of vineyard prunings: a new mechanization system from residues harvest to chips production. Biomass Bioenergy 115:136–142. https://doi.org/10.1016/j.biombioe.2018.04.008

    Article  Google Scholar 

  11. Van der Stelt M, Gerhauser H, Kiel J, Ptasinski K (2011) Biomass upgrading by torrefaction for the production of biofuels: A review. Biomass Bioenergy 35(9):3748–3762. https://doi.org/10.1016/j.biombioe.2011.06.023

    Article  Google Scholar 

  12. Chen WH, Zhuang YQ, Liu SH, Juang TT, Tsai CM (2016) Product characteristics from the torrefaction of oil palm fiber pellets in inert and oxidative atmospheres. Bioresour Technol 199:367–374. https://doi.org/10.1016/j.biortech.2015.08.066

    Article  Google Scholar 

  13. Wang L, Barta-Rajnai E, Skreiberg O, Khalil R, Czégény Z, Jakab E, Barta Z, Grønli M (2018) Effect of torrefaction on physiochemical characteristics and grindability of stem wood, stump and bark. Appl Energy 227:137–148. https://doi.org/10.1016/j.apenergy.2017.07.024

    Article  Google Scholar 

  14. Phanphanich M, Mani S (2011) Impact of torrefaction on the Grindability and fuel characteristics of forest biomass. Bioresour Technol 102(2):1246–1253. https://doi.org/10.1016/j.biortech.2010.08.028

    Article  Google Scholar 

  15. Couhert C, Salvador S, Commandre JM (2009) Impact of torrefaction on syngas production from wood. Fuel 88(11):2286–2290. https://doi.org/10.1016/j.fuel.2009.05.003

    Article  Google Scholar 

  16. Misljenovic N, Bach QV, Tran KQ, C et al (2014) Torrefaction inuence on pelletability and pellet quality of Norwegian forest residues. Energy Fuel 28(4): https://doi.org/10.1021/ef4023674, 2554, 2561

  17. Chen WH, Kuo PC (2011) Torrefaction and co-torrefaction characterization of hemicellulose, cellulose and lignin as well as torrefaction of some basic constituents in biomass. Energy 3(6):803–811. https://doi.org/10.1016/j.energy.2010.12.036

    Article  Google Scholar 

  18. Shankar TJ, Boardman RD, Wright CT, Hess JR (2012) Some chemical compositional changes in Miscanthus and white oak sawdust samples during torrefaction. Energies 5(10):3928–3947. https://doi.org/10.3390/en5103928

    Article  Google Scholar 

  19. Basu P, Sadhukhan AK, Gupta P, Rao S, Dhungana A, Acharya B (2014) An experimental and theoretical investigation on torrefaction of a large wet wood particle. Bioresour Technol 159:215–222. https://doi.org/10.1016/j.biortech.2014.02.105

    Article  Google Scholar 

  20. Wilk M, Magdziarz A, Kalemba I (2015) Characterisation of renewable fuels torrefaction process with different instrumental techniques. Energy 87:259–269. https://doi.org/10.1016/j.energy.2015.04.073

    Article  Google Scholar 

  21. Tumuluru J, Sokhansanj S, Wright CT, Boardman RD, Hess JR (2011) Review on biomass torrefaction process and product properties and design of moving bed torrefaction system model development. ASABE 1110459: 1-39. doi:10.13031/2013.37192

  22. Gucho E, Shahzad K, Bramer E, Akhtar N, Brem G (2015) Experimental study on dry torrefaction of beech wood and miscanthus. Energies 8(5):3903–3923. https://doi.org/10.3390/en8053903

    Article  Google Scholar 

  23. Prins MJ, Ptasinski KJ, Janssen FJ (2006) More efficient biomass gasification via torrefaction. Energy 31:153458–153470. https://doi.org/10.1016/j.energy.2006.03.008

    Article  Google Scholar 

  24. Strandberg M, Olofsson I, Pommer L, Wiklund-Lindström S, Åberg K, Nordin A (2015) Effects of temperature and residence time on continuous torrefaction of spruce wood. Fuel Process Technol 134:387–398. https://doi.org/10.1016/j.fuproc.2015.02.021

    Article  Google Scholar 

  25. Atienza M, Rubio I, Fonts I, Ceamanos J, Gea G (2017) Effect of torrefaction on the catalytic post-treatment of sewage sludge pyrolysis vapors using Al2O3. Chem Ing J 308:264–274. https://doi.org/10.1016/j.cej.2016.09.042

    Article  Google Scholar 

  26. Chen WH, Lu KM, Liu SH, Tsai CM, Lee WJ, Lin TC (2013) Biomass torrefaction characteristics in inert and oxidative atmospheres at various superficial velocities. Bioresour Technol 146:152–160. https://doi.org/10.1016/j.biortech.2013.07.064

    Article  Google Scholar 

  27. Ramos CS, Martínez JD, Pérez JF (2018) Torrefaction of patula pine under air conditions: a chemical and structural characterization. Ind Crop Prod 118:302–310. https://doi.org/10.1016/j.indcrop.2018.03.062

    Article  Google Scholar 

  28. Barskov S, Zappi M, Buchireddy P, Dufreche S, Guillory J, Gang D, Hernandez R, Bajpai R, Baudier J, Cooper R, Sharp R (2019) Torrefaction of biomass: a review of production methods for biocoal from cultured and waste lignocellulosic feedstocks. Renew Energy 142:624–642. https://doi.org/10.1016/j.renene.2019.04.068

    Article  Google Scholar 

  29. Wang Z, Li H, Lim CJ, Grace JR (2018) Oxidative torrefaction of spruce-pine-fir sawdust in a slot-rectangular spouted bed reactor. Energy Convers Manag 174:276–287. https://doi.org/10.1016/j.enconman.2018.08.035

    Article  Google Scholar 

  30. Wang C, Peng J, Li H, Bi XT, Legros R, Lim CJ, Sokhansanj S (2013) Oxidative torrefaction of biomass residues and densification of torrefied sawdust to pellets. Bioresour Technol 127:318–325. https://doi.org/10.1016/j.biortech.2012.09.092

    Article  Google Scholar 

  31. Conag AT, Villahermosa JER, Cabatingan LK, Go AW (2017) Energy densification of sugarcane bagasse through torrefaction under minimized oxidative atmosphere. J Environ Chem Eng 5(6):5411–5419. https://doi.org/10.1016/j.jece.2017.10.032

    Article  Google Scholar 

  32. Li SX, Chen CZ, Li MF, Xiao X (2018) Torrefaction of corncob to produce charcoal under nitrogen and carbon dioxide atmospheres. Bioresour Technol 249:348–353. https://doi.org/10.1016/j.biortech.2017.10.026

    Article  Google Scholar 

  33. Chen WH, Peng J, Bi XT (2015) A state-of-the-art review of biomass torrefaction, densification and applications. Renew Sust Energ Rev 44:847–866. https://doi.org/10.1016/j.rser.2014.12.039

    Article  Google Scholar 

  34. Calvo L, Otero M, Jenkins BM, Moran A, García A (2004) Heating process characteristics and kinetics of rice straw in different atmospheres. Fuel Process Technol 85(4):279–291. https://doi.org/10.1016/S0378-3820(03)00202-9

    Article  Google Scholar 

  35. Fang M, Shen D, Li Y, Yu C, Luo Z, Cen K (2006) Kinetic study on pyrolysis and combustion of wood under different oxygen concentrations by using tg-ftir analysis. J Anal Appl Pyrolysis 77(1):22–27. https://doi.org/10.1016/j.jaap.2005.12.010

    Article  Google Scholar 

  36. Chiang WF, Fang HY, Wu CH, Chang CY, Chang YM, Shie JL (2008) Pyrolysis kinetics of rice husk in different oxygen concentrations. J Environ Eng (New York) 134(4):316–325. https://doi.org/10.1061/(ASCE)0733-9372(2008)134:4(316)

    Article  Google Scholar 

  37. Rousset P, Macedo L, Commandré JM, Moreira A (2012) Biomass torrefaction under different oxygen concentrations and its effect on the composition of the solid by-product. J Anal Appl Pyrolysis 96:86–91. https://doi.org/10.1016/j.jaap.2012.03.009

    Article  Google Scholar 

  38. Chen D, Zheng Z, Fu K, Zeng Z, Wang J, Lu M (2015) Torrefaction of biomass stalk and its effect on the yield and quality of pyrolysis products. Fuel 159:27–32. https://doi.org/10.1016/j.fuel.2015.06.078

    Article  Google Scholar 

  39. Alvarez A, Nogueiro D, Pizarro C, Matos M, Bueno JL (2018) Non-oxidative torrefaction of biomass to enhance its fuel properties. Energy 158:1–8. https://doi.org/10.1016/j.energy.2018.06.009

    Article  Google Scholar 

  40. ASTM E871-82 (2006) American Society for Testing and Materials, standard test method for moisture analysis of particulate wood fuels. ASTM International, USA

    Google Scholar 

  41. Odusote J, Adeleke A, Lasode O et al (2019) Thermal and compositional properties of treated Tectona grandis. Biomass Convers. Biorefin 9(3):511–519. https://doi.org/10.1007/s13399-019-00398-1

    Article  Google Scholar 

  42. Saba A, Saha N, Williams K et al (2020) Binder-free torrefied biomass pellets: significance of torrefaction temperature and pelletization parameters by multivariate analysis. Biomass Convers. Biorefin, 1-9. https://doi.org/10.1007/s13399-019-00398-1

  43. Zhang C, Ho SH, Chen WH, Xie Y, Liu Z, Chang JS (2018) Torrefaction performance and energy usage of biomass wastes and their correlations with torrefaction severity index. Appl Energy 220:598–604. https://doi.org/10.1016/j.apenergy.2018.03.129

    Article  Google Scholar 

  44. ASTM D388 (2012) American Society for Testing and Materials: standard classification of coals by rank. ASTM International, USA

    Google Scholar 

  45. Arias B, Pevida C, Fermoso J, Plaza MG, Rubiera F, Pis JJ (2008) Influence of torrefaction on the grindability and reactivity of woody biomass. Fuel Process Technol 89(2):169–175. https://doi.org/10.1016/j.fuproc.2007.09.002

    Article  Google Scholar 

  46. Agarwal AK, Pandey A, Gupta AK, Aggarwal SK, Kushari A (2014) Novel combustion concepts for sustainable energy development. Springer. https://doi.org/10.1007/978-81-322-2211-8

  47. ASTM E870-82 (2006) American Society for Testing and Materials: standard test methods for analysis of wood fuels. ASTM International, USA

    Google Scholar 

  48. ASTM E872-82 (2006) American Society for Testing and Materials: standard test method for volatile matter in the analysis of particulate wood fuels. ASTM International, USA

    Google Scholar 

  49. ASTM E830-87 (2004) American Society for Testing and Materials: standard test method for ash in the analysis sample of refuse derived fuel. ASTM International, USA

    Google Scholar 

  50. TAPPI 207. (1999). Water solubility of wood and pulp, test method T 207 cm-08.

  51. TAPPI T264. (2007). Preparation of wood for chemical analysis, test method T 264 cm-07.

  52. ASTM D1106-96 (2007) American Society for Testing and Materials: standard test method for acid-insoluble lignin in wood. ASTM International, USA

    Google Scholar 

  53. ASTM D1103-60 (1977) American Society for Testing and Materials: method of test for alpha-cellulose in wood (withdrawn 1985). ASTM International, USA

    Google Scholar 

  54. ASTM E711-87 (2004) American Society for Testing and Materials, standard test method for gross calorific value of refuse derived fuel by the bomb calorimeter. ASTM International, USA

    Google Scholar 

  55. Na BI, Ahn BJ, Lee JW (2015) Changes in chemical and physical properties of yellow poplar (liriodendron tulipifera) during torrefaction. Wood Sci Technol 49(2):257–272. https://doi.org/10.1007/s00226-014-0697-1

    Article  Google Scholar 

  56. Ozawa TA (1965) New method of analyzing thermogravimetric data. Bull Chem Soc Jpn 38:1881e6–1881e181886. https://doi.org/10.1246/bcsj.38.1881

  57. Wongsiriamnuay T, Tippayawong N (2010) Non-isothermal pyrolysis characteristics of giant sensitive plants using thermogravimetric analysis. Bioresour Technol 101(14):5638–5644. https://doi.org/10.1016/j.biortech.2010.02.037

    Article  Google Scholar 

  58. Chen WH, Kuo PC (2011) Isothermal torrefaction kinetics of hemicellulose, cellulose, lignin and xylan using thermogravimetric analysis. Energy 36(11):6451–6460. https://doi.org/10.1016/j.energy.2011.09.022

    Article  Google Scholar 

  59. Kim YH, Na BI, Ahn BJ, Lee HW, Lee JW (2015) Optimal condition of torrefaction for high energy density solid fuel of fast growing tree species. Korean J Chem Eng 32(8):1547–1553. https://doi.org/10.1007/s11814-014-0360-4

    Article  Google Scholar 

  60. Nam H, Capareda S (2015) Experimental investigation of torrefaction of two agricultural wastes of different composition using RSM (response surface methodology). Energy 91:507–516. https://doi.org/10.1016/j.energy.2015.08.064

    Article  Google Scholar 

  61. Medic D, Darr M, Potter B, Shah A (2010) Effect of torrefaction process parameters on biomass feedstock upgrading. ASABE 1009316:1–18. https://doi.org/10.13031/2013.29898

    Article  Google Scholar 

  62. Ho SH, Zhang C, Chen WH, Shen Y, Chang JS (2018) Characterization of biomass waste torrefaction under conventional and microwave heating. Bioresour Technol 264:7–16. https://doi.org/10.1016/j.biortech.2018.05.047

    Article  Google Scholar 

  63. Toptas A, Yildirim Y, Duman G, Yanik J (2015) Combustion behavior of different kinds of torrefied biomass and their blends with lignite. Bioresour Technol 177:328–336. https://doi.org/10.1016/j.biortech.2014.11.072

    Article  Google Scholar 

  64. Wang G, Luo Y, Deng J, Kuang JH, Zhang YL (2011) Pretreatment of biomass by torrefaction. Chin Sci Bull 56(14):1442–1448. https://doi.org/10.1007/s11434-010-4143-y

    Article  Google Scholar 

  65. Margaritis N, Grammelis P, Karampinis E, Kanaveli IP (2020) Impact of torrefaction on vine Pruning’s fuel characteristics. J Energy Eng 146(3):04020006. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000654

  66. Duranay N, Akkuş G (2019) Solid fuel production with torrefaction from vineyard pruning waste. Biomass Convers Biorefin:1–12. https://doi.org/10.1007/s13399-019-00496-0

  67. Branca C, Blasi CD, Galgano A, Brostrom M (2014) Effects of the torrefaction conditions on the fixed-bed pyrolysis of norway spruce. Energy Fuel 28(9):5882–5891. https://doi.org/10.1021/ef501395b

    Article  Google Scholar 

  68. Granados D, Ruiz R, Vega L, Chejne F (2017) Study of reactivity reduction in sugarcane bagasse as consequence of a torrefaction process. Energy 139:818–827. https://doi.org/10.1016/j.energy.2017.08.013

    Article  Google Scholar 

  69. Satpathy SK, Tabil LG, Meda V, Naik SN, Prasad R (2014) Torrefaction of wheat and barley straw after microwave heating. Fuel 124:269–278. https://doi.org/10.1016/j.fuel.2014.01.102

    Article  Google Scholar 

  70. Fisher T, Hajaligol M, Waymack B, Kellogg D (2002) Pyrolysis behavior and kinetics of biomass derived materials. J Anal Appl Pyrolysis 62(2):331–349. https://doi.org/10.1016/S0165-2370(01)00129-2

    Article  Google Scholar 

  71. Bridgeman T, Jones J, Williams A, Waldron D (2010) An investigation of the grindability of two torrefied energy crops. Fuel 89(12):3911–3918. https://doi.org/10.1016/j.fuel.2010.06.043

    Article  Google Scholar 

  72. Ibrahim RH, Darvell LI, Jones JM, Williams A (2013) Physicochemical characterisation of torrefied biomass. J Anal Appl Pyrolysis 103:21–30. https://doi.org/10.1016/j.jaap.2012.10.004

    Article  Google Scholar 

  73. Pimchuai A, Dutta A, Basu P (2010) Torrefaction of agriculture residue to enhance combustible properties. Energy Fuel 24(9):4638–4645. https://doi.org/10.1021/ef901168f

    Article  Google Scholar 

  74. Ohm TI, Chae JS, Kim JK, Oh SC (2015) Study on the characteristics of biomass for co-combustion in coal power plant. J Mater Cycles Waste Manag 17(2):249–257. https://doi.org/10.1007/s10163-014-0334-y

    Article  Google Scholar 

  75. Bergman PCA, Boersma AR, Kiel JHA (2005) Torrefaction for entrained-flow gasification of biomass. Report ECN-C--04-029: 78-82. https://publicaties.ecn.nl/PdfFetch.aspx?nr=ECN-RX%2D%2D04-029#page=78

  76. Tan I, Shafee N, Abdullah M, Lim L (2017) Synthesis and characterization of biocoal from cymbopogon citrates residue using microwave-induced torrefaction. Environ Technol Innov 8:431–440. https://doi.org/10.1016/j.eti.2017.09.006

    Article  Google Scholar 

  77. Nhuchhen DR, Basu P, Acharya B (2014) A comprehensive review on biomass torrefaction. IJREB 2014:1–56. https://doi.org/10.5171/2014.506376

    Article  Google Scholar 

  78. Bianchi O, Oliveira R, Fiorio R et al (2008) Assessment of avrami, ozawa and avrami-ozawa equations for determination of eva crosslinking kinetics from dsc measurements. Polym Test 27(6):722–729. https://doi.org/10.1016/j.polymertesting.2008.05.003

    Article  Google Scholar 

  79. Wongsiriamnuay T, Tippayawong N (2010) Thermogravimetric analysis of giant sensitive plants under air atmosphere. Bioresour Technol 101(23):9314–9320. https://doi.org/10.1016/j.biortech.2010.06.141

    Article  Google Scholar 

  80. Fernandes DM, Hechenleitner AW, Pineda EG (2006) Kinetic study of the thermal decomposition of poly (vinyl alcohol)/kraft lignin derivative blends. Thermochim Acta 441(1):101–109. https://doi.org/10.1016/j.tca.2005.11.006

    Article  Google Scholar 

  81. Munir S, Daood S, Nimmo W, Cunliffe A, Gibbs B (2009) Thermal analysis and devolatilization kinetics of cotton stalk, sugar cane bagasse and shea meal under nitrogen and air atmospheres. Bioresour Technol 100(3):1413–1418. https://doi.org/10.1016/j.biortech.2008.07.065

    Article  Google Scholar 

  82. Chen WH, Wu ZY, Chang JS (2014) Isothermal and non-isothermal torrefaction characteristics and kinetics of microalga scenedesmus obliquus cnw-n. Bioresour Technol 155:245–251. https://doi.org/10.1016/j.biortech.2013.12.116

    Article  Google Scholar 

  83. Sher F, Yaqoob A, Saeed F, Zhang S, Jahan Z, Klemeš JJ (2020) Torrefied biomass fuels as a renewable alternative to coal in co-firing for power generation. Energy 209:118444. https://doi.org/10.1016/j.energy.2020.118444

    Article  Google Scholar 

  84. Rentizelas A, Li J (2016) Techno-economic and carbon emissions analysis of biomass torrefaction downstream in international bioenergy supply chains for co-firing. Energy 114:129–142. https://doi.org/10.1016/j.energy.2016.07.159

    Article  Google Scholar 

  85. Čuček L, Klemeš J, Varbanov P, Kravanja Z (2015) Significance of environmental footprints for evaluating sustainability and security of development. Clean Techn Environ Policy 17(8):2125–2141. https://doi.org/10.1007/s10098-015-0972-3

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Consejo Nacional de Ciencia y Tecnología (CONACYT) of México, Instituto de Ingeniería of Universidad Autónoma de Baja California, and Facultad de Ciencias of Universidad Nacional de Colombia-Medellín (UNAL) for their support to carry out this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gisela Montero.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torres, R., Valdez, B., Beleño, M.T. et al. Char production with high-energy value and standardized properties from two types of biomass. Biomass Conv. Bioref. 13, 4831–4847 (2023). https://doi.org/10.1007/s13399-021-01498-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-01498-7

Keywords

Navigation