Skip to main content

Advertisement

Log in

The State-of-the-Art Production of Biofuel from Microalgae with Simultaneous Wastewater Treatment: Influence of Process Variables on Biofuel Yield and Production Cost

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Microalgal biofuel production is a useful process to produce sustainable and carbon-neutral biofuels. The choice of microalgal species and the processes adopted in various production stages determine biofuel production. In this review, recent technological advancements made in various stages of microalgal biofuel production are discussed. This review also discussed the recent progress made in harvesting microalgal biomass and lipid extraction. In addition, the viability of using wastewater as a nutrient source for microalgae and its nutrient removal capabilities has been discussed in detail. This is the first study that enlists and compares the minimum achievable cost of biofuel produced in different studies. Also, process optimization strategies adopted to minimize the cost are discussed. The reported biofuel production cost varied from 0.14 $/L to 24.33 $/L based on the variation in the microalgae strains, production method, and optimization strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of Data and Material

Not applicable.

Code Availability

Not applicable.

Abbreviations

ASP:

Activated sludge process

CAPEX:

Capital expenses

COD:

Chemical oxygen demand

DME:

Dimethyl ether

FAME:

Fatty acid methyl esters

GM:

Genetically modified

HRAP:

High-rate algal pond

HTL:

Hydrothermal liquefaction

NH4 + :

Ammonium

NO3 :

Nitrate

OPEX:

Operating expenses

ORP:

Open raceway pond

PBR:

Photobioreactors

PO4 3− :

Phosphate

RABR:

Rotating algal biofilm

TN:

Total nitrogen

TP:

Total phosphorus

WW:

Wastewater

References

  1. Anto S, Mukherjee SS, Muthappa R, Mathimani T, Deviram G, Kumar SS, Verma TN, Pugazhendhi A (2020) Algae as green energy reserve: technological outlook on biofuel production. Chemosphere 242:125079. https://doi.org/10.1016/j.chemosphere.2019.125079

    Article  CAS  PubMed  Google Scholar 

  2. U.S. EPA (2012) Economics of biofuels. In: Environ. Prot. Agency. https://www.epa.gov/environmental-economics/economics-biofuels#:~:text=It established a Renewable Fuel, with gasoline annually by 2012.&text=EISA expanded the Renewable Fuel,36 billion gallons by 2022. Accessed 5 Jul 2020

  3. Sustainability US (2020) The renewable fuel standard and biofuels policy. Congr. Res. Serv, In https://fas.org/sgp/crs/misc/R43325.pdf

    Google Scholar 

  4. Alalwan HA, Alminshid AH, Aljaafari HAS (2019) Promising evolution of biofuel generations. Subject review. Renew Energy Focus 28:127–139. https://doi.org/10.1016/j.ref.2018.12.006

    Article  Google Scholar 

  5. La Barre S, Bates SS, Borowitzka M (2018) Commercial-scale production of microalgae for bioproducts. Blue Biotechnol:33–65. https://doi.org/10.1002/9783527801718.ch2

  6. Tang DYY, Khoo KS, Chew KW, Tao Y, Ho SH, Show PL (2020) Potential utilization of bioproducts from microalgae for the quality enhancement of natural products. Bioresour Technol 304:122997. https://doi.org/10.1016/j.biortech.2020.122997

    Article  CAS  PubMed  Google Scholar 

  7. Khan S, Siddique R, Sajjad W, Nabi G, Hayat KM, Duan P, Yao L (2017) Biodiesel production from algae to overcome the energy crisis. HAYATI J Biosci 24:163–167. https://doi.org/10.1016/j.hjb.2017.10.003

    Article  Google Scholar 

  8. Thirugnanasambantham R, Elango T, Elangovan K (2020) Chlorella vulgaris sp. microalgae as a feedstock for biofuel. Mater Today Proc 33:3182–3185. https://doi.org/10.1016/j.matpr.2020.04.106

    Article  CAS  Google Scholar 

  9. Özçimen D, Inan B (2015) An overview of bioethanol production from algae. Biofuels - Status Perspect. https://doi.org/10.5772/59305

  10. Niphadkar S, Bagade P, Ahmed S (2018) Bioethanol production: insight into past, present and future perspectives. Biofuels 9:229–238. https://doi.org/10.1080/17597269.2017.1334338

    Article  CAS  Google Scholar 

  11. Tsukahara K, Sawayama S (2005) Liquid fuel production using microalgae. J Japan Pet Inst 48:251–259. https://doi.org/10.1627/jpi.48.251

    Article  CAS  Google Scholar 

  12. Lam MK, Lee KT (2012) Microalgae biofuels: a critical review of issues, problems and the way forward. Biotechnol Adv 30:673–690. https://doi.org/10.1016/j.biotechadv.2011.11.008

    Article  CAS  PubMed  Google Scholar 

  13. Venkata Subhash G, Rajvanshi M, Navish Kumar B, Govindachary S, Prasad V, Dasgupta S (2017) Carbon streaming in microalgae: extraction and analysis methods for high value compounds. Bioresour Technol 244:1304–1316. https://doi.org/10.1016/j.biortech.2017.07.024

    Article  CAS  PubMed  Google Scholar 

  14. Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14:557–577. https://doi.org/10.1016/j.rser.2009.10.009

    Article  CAS  Google Scholar 

  15. Kumar A, Ergas S, Yuan X, Sahu A, Zhang Q, Dewulf J, Malcata FX, van Langenhove H (2010) Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions. Trends Biotechnol 28:371–380. https://doi.org/10.1016/j.tibtech.2010.04.004

    Article  CAS  PubMed  Google Scholar 

  16. Torres-Tiji Y, Fields FJ, Mayfield SP (2020) Microalgae as a future food source. Biotechnol Adv 41:107536. https://doi.org/10.1016/j.biotechadv.2020.107536

    Article  CAS  PubMed  Google Scholar 

  17. Qiu R, Gao S, Lopez PA, Ogden KL (2017) Effects of pH on cell growth, lipid production and CO2 addition of microalgae Chlorella sorokiniana. Algal Res 28:192–199. https://doi.org/10.1016/j.algal.2017.11.004

    Article  Google Scholar 

  18. Maffei G, Bracciale MP, Broggi A, Zuorro A, Santarelli ML, Lavecchia R (2018) Effect of an enzymatic treatment with cellulase and mannanase on the structural properties of Nannochloropsis microalgae. Bioresour Technol 249:592–598. https://doi.org/10.1016/j.biortech.2017.10.062

    Article  CAS  PubMed  Google Scholar 

  19. Qu Z, Zeng J, Zhang Y, Liao Q, Sharma BK, Fu Q, Huang Y, Liu Z (2018) Hydrothermal cell disruption of Nannochloropsis sp. and its influence on lipid extraction. Algal Res 35:407–415. https://doi.org/10.1016/j.algal.2018.09.015

    Article  Google Scholar 

  20. Somers MD, Quinn JC (2019) Sustainability of carbon delivery to an algal biorefinery: a techno-economic and life-cycle assessment. J CO2 Util 30:193–204. https://doi.org/10.1016/j.jcou.2019.01.007

    Article  CAS  Google Scholar 

  21. Abdel-Fatah MA, Sherif HO, Hawash SI (2017) Design parameters for waste effluent treatment unit from beverages production. Ain Shams Eng J 8:305–310. https://doi.org/10.1016/j.asej.2016.04.008

    Article  Google Scholar 

  22. Molazadeh M, Ahmadzadeh H, Pourianfar HR, Lyon S, Rampelotto PH (2019) The use of microalgae for coupling wastewater treatment with CO2 biofixation. Front Bioeng Biotechnol 7. https://doi.org/10.3389/fbioe.2019.00042

  23. Arun S, Sinharoy A, Pakshirajan K, Lens PNL (2020) Algae based microbial fuel cells for wastewater treatment and recovery of value-added products. Renew Sust Energ Rev 132:110041. https://doi.org/10.1016/j.rser.2020.110041

    Article  CAS  Google Scholar 

  24. Kligerman DC, Bouwer EJ (2015) Prospects for biodiesel production from algae-based wastewater treatment in Brazil: a review. Renew Sust Energ Rev 52:1834–1846. https://doi.org/10.1016/j.rser.2015.08.030

    Article  CAS  Google Scholar 

  25. Collotta M, Champagne P, Mabee W, Tomasoni G (2018) Wastewater and waste CO2 for sustainable biofuels from microalgae. Algal Res 29:12–21. https://doi.org/10.1016/j.algal.2017.11.013

    Article  Google Scholar 

  26. Feng X, Chen Y, Lv J, Han S, Tu R, Zhou X, Jin W, Ren N (2020) Enhanced lipid production by Chlorella pyrenoidosa through magnetic field pretreatment of wastewater and treatment of microalgae-wastewater culture solution: magnetic field treatment modes and conditions. Bioresour Technol 306:123102. https://doi.org/10.1016/j.biortech.2020.123102

    Article  CAS  PubMed  Google Scholar 

  27. Shahid A, Malik S, Zhu H, Xu J, Nawaz MZ, Nawaz S, Asraful Alam M, Mehmood MA (2020) Cultivating microalgae in wastewater for biomass production, pollutant removal, and atmospheric carbon mitigation; a review. Sci Total Environ 704:135303. https://doi.org/10.1016/j.scitotenv.2019.135303

    Article  CAS  PubMed  Google Scholar 

  28. Li X, Yang C, Zeng G, Wu S, Lin Y, Zhou Q, Lou W, du C, Nie L, Zhong Y (2020) Nutrient removal from swine wastewater with growing microalgae at various zinc concentrations. Algal Res 46:101804. https://doi.org/10.1016/j.algal.2020.101804

    Article  Google Scholar 

  29. de Mendonça HV, Ometto JPHB, Otenio MH, Marques IPR, dos Reis AJD (2018) Microalgae-mediated bioremediation and valorization of cattle wastewater previously digested in a hybrid anaerobic reactor using a photobioreactor: comparison between batch and continuous operation. Sci Total Environ 633:1–11. https://doi.org/10.1016/j.scitotenv.2018.03.157

    Article  CAS  PubMed  Google Scholar 

  30. Leong YK, Chang J-S (2020) Bioremediation of heavy metals using microalgae: recent advances and mechanisms. Bioresour Technol 303:122886. https://doi.org/10.1016/j.biortech.2020.122886

    Article  CAS  PubMed  Google Scholar 

  31. Huang R, Huo G, Song S, Li Y, Xia L, Gaillard JF (2019) Immobilization of mercury using high-phosphate culture-modified microalgae. Environ Pollut 254:112966. https://doi.org/10.1016/j.envpol.2019.112966

    Article  CAS  PubMed  Google Scholar 

  32. Fard GH, Mehrnia MR (2017) Investigation of mercury removal by micro-algae dynamic membrane bioreactor from simulated dental waste water. J Environ Chem Eng 5:366–372. https://doi.org/10.1016/j.jece.2016.11.031

    Article  CAS  Google Scholar 

  33. Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14:217–232. https://doi.org/10.1016/j.rser.2009.07.020

    Article  CAS  Google Scholar 

  34. Li K, Liu Q, Fang F, Luo R, Lu Q, Zhou W, Huo S, Cheng P, Liu J, Addy M, Chen P, Chen D, Ruan R (2019) Microalgae-based wastewater treatment for nutrients recovery: a review. Bioresour Technol 291:121934. https://doi.org/10.1016/j.biortech.2019.121934

    Article  CAS  PubMed  Google Scholar 

  35. Pierobon SC, Cheng X, Graham PJ, Nguyen B, Karakolis EG, Sinton D (2018) Emerging microalgae technology: a review. Sustain Energy Fuels 2:13–38. https://doi.org/10.1039/C7SE00236J

    Article  CAS  Google Scholar 

  36. Peng L, Fu D, Chu H, Wang Z, Qi H (2020) Biofuel production from microalgae: a review. Environ Chem Lett 18:285–297. https://doi.org/10.1007/s10311-019-00939-0

    Article  CAS  Google Scholar 

  37. Tan CH, Show PL, Chang J-S, Ling TC, Lan JCW (2015) Novel approaches of producing bioenergies from microalgae: a recent review. Biotechnol Adv 33:1219–1227. https://doi.org/10.1016/j.biotechadv.2015.02.013

    Article  CAS  PubMed  Google Scholar 

  38. Mohd Udaiyappan AF, Abu Hasan H, Takriff MS, Sheikh Abdullah SR (2017) A review of the potentials, challenges and current status of microalgae biomass applications in industrial wastewater treatment. J Water Process Eng 20:8–21. https://doi.org/10.1016/j.jwpe.2017.09.006

    Article  Google Scholar 

  39. Jonker JGG, Faaij APC (2013) Techno-economic assessment of micro-algae as feedstock for renewable bio-energy production. Appl Energy 102:461–475. https://doi.org/10.1016/j.apenergy.2012.07.053

    Article  Google Scholar 

  40. Hernández-Calderón OM, Ponce-Ortega JM, Ortiz-Del-Castillo JR et al (2016) Optimal design of distributed algae-based biorefineries using CO2 emissions from multiple industrial plants. Ind Eng Chem Res 55:2345–2358. https://doi.org/10.1021/acs.iecr.5b01684

    Article  CAS  Google Scholar 

  41. Fasaei F, Bitter JH, Slegers PM, van Boxtel AJB (2018) Techno-economic evaluation of microalgae harvesting and dewatering systems. Algal Res 31:347–362. https://doi.org/10.1016/j.algal.2017.11.038

    Article  Google Scholar 

  42. Cruce JR, Quinn JC (2019) Economic viability of multiple algal biorefining pathways and the impact of public policies. Appl Energy 233–234:735–746. https://doi.org/10.1016/j.apenergy.2018.10.046

    Article  Google Scholar 

  43. Al Ketife AMD, Almomani F, EL-Naas M, Judd S (2019) A technoeconomic assessment of microalgal culture technology implementation for combined wastewater treatment and CO2 mitigation in the Arabian Gulf. Process Saf Environ Prot 127:90–102. https://doi.org/10.1016/j.psep.2019.05.003

    Article  CAS  Google Scholar 

  44. DeRose K, DeMill C, Davis RW, Quinn JC (2019) Integrated techno economic and life cycle assessment of the conversion of high productivity, low lipid algae to renewable fuels. Algal Res 38:101412. https://doi.org/10.1016/j.algal.2019.101412

    Article  Google Scholar 

  45. Barlow J, Sims RC, Quinn JC (2016) Techno-economic and life-cycle assessment of an attached growth algal biorefinery. Bioresour Technol 220:360–368. https://doi.org/10.1016/j.biortech.2016.08.091

    Article  CAS  PubMed  Google Scholar 

  46. Richardson JW, Johnson MD, Outlaw JL (2012) Economic comparison of open pond raceways to photo bio-reactors for profitable production of algae for transportation fuels in the Southwest. Algal Res 1:93–100. https://doi.org/10.1016/j.algal.2012.04.001

    Article  Google Scholar 

  47. Herrera A, D’Imporzano G, Acién Fernandez FG, Adani F (2021) Sustainable production of microalgae in raceways: nutrients and water management as key factors influencing environmental impacts. J Clean Prod 287:125005. https://doi.org/10.1016/j.jclepro.2020.125005

    Article  CAS  Google Scholar 

  48. Bussa M, Zollfrank C, Röder H (2020) Life-cycle assessment and geospatial analysis of integrating microalgae cultivation into a regional economy. J Clean Prod 243:118630. https://doi.org/10.1016/j.jclepro.2019.118630

    Article  CAS  Google Scholar 

  49. Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26:126–131. https://doi.org/10.1016/j.tibtech.2007.12.002

    Article  CAS  PubMed  Google Scholar 

  50. Pittman JK, Dean AP, Osundeko O (2011) The potential of sustainable algal biofuel production using wastewater resources. Bioresour Technol 102:17–25. https://doi.org/10.1016/j.biortech.2010.06.035

    Article  CAS  PubMed  Google Scholar 

  51. Gauthier MR, Senhorinho GNA, Scott JA (2020) Microalgae under environmental stress as a source of antioxidants. Algal Res 52:102104. https://doi.org/10.1016/j.algal.2020.102104

    Article  Google Scholar 

  52. Poh ZL, Amalina Kadir WN, Lam MK, Uemura Y, Suparmaniam U, Lim JW, Show PL, Lee KT (2020) The effect of stress environment towards lipid accumulation in microalgae after harvesting. Renew Energy 154:1083–1091. https://doi.org/10.1016/j.renene.2020.03.081

    Article  CAS  Google Scholar 

  53. Xiong W, Li X, Xiang J, Wu Q (2008) High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Appl Microbiol Biotechnol 78:29–36. https://doi.org/10.1007/s00253-007-1285-1

    Article  CAS  PubMed  Google Scholar 

  54. Tornabene TG, Holzer G, Lien S, Burris N (1983) Lipid composition of the nitrogen starved green alga Neochloris oleoabundans. Enzym Microb Technol 5:435–440. https://doi.org/10.1016/0141-0229(83)90026-1

    Article  CAS  Google Scholar 

  55. Liu ZY, Wang GC, Zhou BC (2008) Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresour Technol 99:4717–4722. https://doi.org/10.1016/j.biortech.2007.09.073

    Article  CAS  PubMed  Google Scholar 

  56. Gouveia L, Oliveira AC (2009) Microalgae as a raw material for biofuels production. J Ind Microbiol Biotechnol 36:269–274. https://doi.org/10.1007/s10295-008-0495-6

    Article  CAS  PubMed  Google Scholar 

  57. Martín LA, Popovich CA, Damiani MC, Leonardi PI (2020) A practical tool for selecting microalgal species for biodiesel production. J Renew Sustain Energy 12:063101. https://doi.org/10.1063/5.0010668

    Article  CAS  Google Scholar 

  58. Ashokkumar V, Rengasamy R (2012) Mass culture of Botryococcus braunii Kutz. under open raceway pond for biofuel production. Bioresour Technol 104:394–399. https://doi.org/10.1016/j.biortech.2011.10.093

    Article  CAS  PubMed  Google Scholar 

  59. Nwoba EG, Parlevliet DA, Laird DW, Alameh K, Moheimani NR (2020) Pilot-scale self-cooling microalgal closed photobioreactor for biomass production and electricity generation. Algal Res 45:101731. https://doi.org/10.1016/j.algal.2019.101731

    Article  Google Scholar 

  60. Chiaramonti D, Prussi M, Casini D, Tredici MR, Rodolfi L, Bassi N, Zittelli GC, Bondioli P (2013) Review of energy balance in raceway ponds for microalgae cultivation: re-thinking a traditional system is possible. Appl Energy 102:101–111. https://doi.org/10.1016/j.apenergy.2012.07.040

    Article  Google Scholar 

  61. Bani A, Fernandez FGA, D’Imporzano G et al (2021) Influence of photobioreactor set-up on the survival of microalgae inoculum. Bioresour Technol 320:124408. https://doi.org/10.1016/j.biortech.2020.124408

    Article  CAS  PubMed  Google Scholar 

  62. Cui X, Yang J, Feng Y (2020) Zhang W (2020) Simulation of a novel tubular microalgae photobioreactor with aerated tangent inner tubes: improvements in mixing performance and flashing-light effects. Archaea 2020:1–16. https://doi.org/10.1155/2020/8815263

    Article  CAS  Google Scholar 

  63. Rossi S, Sforza E, Pastore M, Bellucci M, Casagli F, Marazzi F, Ficara E (2020) Photo-respirometry to shed light on microalgae-bacteria consortia—a review. Rev Environ Sci Bio/Technology 19:43–72. https://doi.org/10.1007/s11157-020-09524-2

    Article  CAS  Google Scholar 

  64. Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high-eficiency microalgae for biodiesel production. BioEnergy Res 1:20–43. https://doi.org/10.1007/s12155-008-9008-8

    Article  Google Scholar 

  65. Jerney J, Spilling K (2018) Large scale cultivation of microalgae: open and closed systems. Methods Mol Biol 1980:1–8. https://doi.org/10.1007/7651_2018_130

    Article  CAS  Google Scholar 

  66. Pacheco MM, Hoeltz M, Bjerk TR, Souza MP, da Silva LFF, Gressler PD, Moraes MSA, Lobo EA, Schneider RCS (2019) Evaluation of microalgae growth in a mixed-type photobioreactor system for the phycoremediation of wastewater. J Chem Technol Biotechnol 94:3102–3110. https://doi.org/10.1002/jctb.6117

    Article  CAS  Google Scholar 

  67. Acién FG, Molina E, Reis A et al (2017) Photobioreactors for the production of microalgae. Microalgae-Based Biofuels Bioprod From Feed Cultiv to End-Products 1–44. https://doi.org/10.1016/B978-0-08-101023-5.00001-7

  68. Sompech K, Chisti Y, Srinophakun T (2012) Design of raceway ponds for producing microalgae. Biofuels 3:387–397. https://doi.org/10.4155/bfs.12.39

    Article  CAS  Google Scholar 

  69. Soman A, Shastri Y (2015) Optimization of novel photobioreactor design using computational fluid dynamics. Appl Energy 140:246–255. https://doi.org/10.1016/j.apenergy.2014.11.072

    Article  Google Scholar 

  70. Morweiser M, Kruse O, Hankamer B, Posten C (2010) Developments and perspectives of photobioreactors for biofuel production. Appl Microbiol Biotechnol 87:1291–1301. https://doi.org/10.1007/s00253-010-2697-x

    Article  CAS  PubMed  Google Scholar 

  71. Hyeon YU, Bok LI, Hwan SI, Woo KR (2018) Identification of the key structural parameters for the design of a large-scale PBR. Biosyst Eng 171:165–178. https://doi.org/10.1016/j.biosystemseng.2018.04.012

    Article  Google Scholar 

  72. Singh G, Patidar SK (2018) Microalgae harvesting techniques: a review. J Environ Manag 217:499–508. https://doi.org/10.1016/j.jenvman.2018.04.010

    Article  Google Scholar 

  73. Barros AI, Gonçalves AL, Simões M, Pires JCM (2015) Harvesting techniques applied to microalgae: a review. Renew Sust Energ Rev 41:1489–1500. https://doi.org/10.1016/j.rser.2014.09.037

    Article  Google Scholar 

  74. Uduman N, Qi Y, Danquah MK, Forde GM, Hoadley A (2010) Dewatering of microalgal cultures: a major bottleneck to algae-based fuels. J Renew Sustain Energy 2:012701. https://doi.org/10.1063/1.3294480

    Article  CAS  Google Scholar 

  75. Zamalloa C, Vulsteke E, Albrecht J, Verstraete W (2011) The techno-economic potential of renewable energy through the anaerobic digestion of microalgae. Bioresour Technol 102:1149–1158. https://doi.org/10.1016/j.biortech.2010.09.017

    Article  CAS  PubMed  Google Scholar 

  76. Molina Grima E, Belarbi EH, Acién Fernández FG, Robles Medina A, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515. https://doi.org/10.1016/S0734-9750(02)00050-2

    Article  CAS  PubMed  Google Scholar 

  77. Laamanen CA, Ross GM, Scott JA (2016) Flotation harvesting of microalgae. Renew Sust Energ Rev 58:75–86. https://doi.org/10.1016/j.rser.2015.12.293

    Article  Google Scholar 

  78. Vasistha S, Khanra A, Clifford M, Rai MP (2021) Current advances in microalgae harvesting and lipid extraction processes for improved biodiesel production: a review. Renew Sust Energ Rev 137:110498. https://doi.org/10.1016/j.rser.2020.110498

    Article  CAS  Google Scholar 

  79. Bracharz F, Helmdach D, Aschenbrenner I, Funck N, Wibberg D, Winkler A, Bohnen F, Kalinowski J, Mehlmer N, Brück TB (2018) Harvest of the oleaginous microalgae Scenedesmus obtusiusculus by flocculation from culture based on natural water sources. Front Bioeng Biotechnol 6:200. https://doi.org/10.3389/fbioe.2018.00200

    Article  PubMed  PubMed Central  Google Scholar 

  80. Ummalyma SB, Mathew AK, Pandey A, Sukumaran RK (2016) Harvesting of microalgal biomass: efficient method for flocculation through pH modulation. Bioresour Technol 213:216–221. https://doi.org/10.1016/j.biortech.2016.03.114

    Article  CAS  PubMed  Google Scholar 

  81. Banerjee C, Ghosh S, Sen G, Mishra S, Shukla P, Bandopadhyay R (2014) Study of algal biomass harvesting through cationic cassia gum, a natural plant based biopolymer. Bioresour Technol 151:6–11. https://doi.org/10.1016/j.biortech.2013.10.035

    Article  CAS  PubMed  Google Scholar 

  82. Jiang J, Jin W, Tu R, Han S, Ji Y, Zhou X (2021) Harvesting of microalgae Chlorella pyrenoidosa by bio-flocculation with bacteria and filamentous fungi. Waste and biomass valorization 12:145–154. https://doi.org/10.1007/s12649-020-00979-6

    Article  CAS  Google Scholar 

  83. Pérez L, Salgueiro JL, Maceiras R, Cancela Á, Sánchez Á (2016) Influence of a combination of flocculants on harvesting of Chaetoceros gracilis marine microalgae. Chem Eng Technol 39:1685–1692. https://doi.org/10.1002/ceat.201500564

    Article  CAS  Google Scholar 

  84. Dineshkumar R, Paul A, Gangopadhyay M, Singh NDP, Sen R (2017) Smart and reusable biopolymer nanocomposite for simultaneous microalgal biomass harvesting and disruption: integrated downstream processing for a sustainable biorefinery. ACS Sustain Chem Eng 5:852–861. https://doi.org/10.1021/acssuschemeng.6b02189

    Article  CAS  Google Scholar 

  85. Alam F, Mobin S, Chowdhury H (2015) Third generation biofuel from algae. Procedia Eng 105:763–768. https://doi.org/10.1016/j.proeng.2015.05.068

    Article  CAS  Google Scholar 

  86. Schlesinger A, Eisenstadt D, Bar-Gil A, Carmely H, Einbinder S, Gressel J (2012) Inexpensive non-toxic flocculation of microalgae contradicts theories; overcoming a major hurdle to bulk algal production. Biotechnol Adv 30:1023–1030. https://doi.org/10.1016/j.biotechadv.2012.01.011

    Article  CAS  PubMed  Google Scholar 

  87. Patil PD, Dandamudi KPR, Wang J, Deng Q, Deng S (2018) Extraction of bio-oils from algae with supercritical carbon dioxide and co-solvents. J Supercrit Fluids 135:60–68. https://doi.org/10.1016/j.supflu.2017.12.019

    Article  CAS  Google Scholar 

  88. Karpagam R, Preeti R, Jawahar Raj K, Saranya S, Ashokkumar B, Varalakshmi P (2015) Fatty acid biosynthesis from a new isolate Meyerella sp. N4: molecular characterization, nutrient starvation, and fatty acid profiling for lipid enhancement. Energy Fuel 29:143–149. https://doi.org/10.1021/ef501969a

    Article  CAS  Google Scholar 

  89. Li YX, Zhao FJ, Yu DD (2015) Effect of nitrogen limitation on cell growth, lipid accumulation and gene expression in Chlorella sorokiniana. Braz Arch Biol Technol 58:462–467. https://doi.org/10.1590/S1516-8913201500391

    Article  CAS  Google Scholar 

  90. Fan J, Cui Y, Wan M, Wang W, Li Y (2014) Lipid accumulation and biosynthesis genes response of the oleaginous Chlorella pyrenoidosa under three nutrition stressors. Biotechnol Biofuels 7:17. https://doi.org/10.1186/1754-6834-7-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Shen QH, Gong YP, Fang WZ, Bi ZC, Cheng LH, Xu XH, Chen HL (2015) Saline wastewater treatment by Chlorella vulgaris with simultaneous algal lipid accumulation triggered by nitrate deficiency. Bioresour Technol 193:68–75. https://doi.org/10.1016/j.biortech.2015.06.050

    Article  CAS  PubMed  Google Scholar 

  92. Salama ES, Kim HC, Abou-Shanab RAI, Ji MK, Oh YK, Kim SH, Jeon BH (2013) Biomass, lipid content, and fatty acid composition of freshwater Chlamydomonas mexicana and Scenedesmus obliquus grown under salt stress. Bioprocess Biosyst Eng 36:827–833. https://doi.org/10.1007/s00449-013-0919-1

    Article  CAS  Google Scholar 

  93. Abomohra AEF, Shang H, El-Sheekh M et al (2019) Night illumination using monochromatic light-emitting diodes for enhanced microalgal growth and biodiesel production. Bioresour Technol 288:121514. https://doi.org/10.1016/j.biortech.2019.121514

    Article  CAS  PubMed  Google Scholar 

  94. Zuorro A, Maffei G, Lavecchia R (2016) Optimization of enzyme-assisted lipid extraction from Nannochloropsis microalgae. J Taiwan Inst Chem Eng 67:106–114. https://doi.org/10.1016/j.jtice.2016.08.016

    Article  CAS  Google Scholar 

  95. Zuorro A, Miglietta S, Familiari G, Lavecchia R (2016) Enhanced lipid recovery from Nannochloropsis microalgae by treatment with optimized cell wall degrading enzyme mixtures. Bioresour Technol 212:35–41. https://doi.org/10.1016/j.biortech.2016.04.025

    Article  CAS  PubMed  Google Scholar 

  96. Lardon L, Hélias A, Sialve B et al (2009) Life-cycle assessment of biodiesel production from microalgae. Environ Sci Technol 43:6475–6481. https://doi.org/10.1021/es900705j

    Article  CAS  PubMed  Google Scholar 

  97. Arumugam M, Agarwal A, Arya MC, Ahmed Z (2013) Influence of nitrogen sources on biomass productivity of microalgae Scenedesmus bijugatus. Bioresour Technol 131:246–249. https://doi.org/10.1016/j.biortech.2012.12.159

    Article  CAS  PubMed  Google Scholar 

  98. Cho HS, Oh YK, Park SC, Lee JW, Park JY (2013) Effects of enzymatic hydrolysis on lipid extraction from Chlorella vulgaris. Renew Energy 54:156–160. https://doi.org/10.1016/j.renene.2012.08.031

    Article  CAS  Google Scholar 

  99. Taher H, Al-Zuhair S, Al-Marzouqi AH et al (2014) Effective extraction of microalgae lipids from wet biomass for biodiesel production. Biomass Bioenergy 66:159–167. https://doi.org/10.1016/j.biombioe.2014.02.034

    Article  CAS  Google Scholar 

  100. Scholz MJ, Weiss TL, Jinkerson RE, Jing J, Roth R, Goodenough U, Posewitz MC, Gerken HG (2014) Ultrastructure and composition of the Nannochloropsis gaditana cell wall. Eukaryot Cell 13:1450–1464. https://doi.org/10.1128/EC.00183-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Mubarak M, Shaija A, Suchithra TV (2015) A review on the extraction of lipid from microalgae for biodiesel production. Algal Res 7:117–123. https://doi.org/10.1016/j.algal.2014.10.008

    Article  Google Scholar 

  102. Lee AK, Lewis DM, Ashman PJ (2012) Disruption of microalgal cells for the extraction of lipids for biofuels: processes and specific energy requirements. Biomass Bioenergy 46:89–101. https://doi.org/10.1016/j.biombioe.2012.06.034

    Article  CAS  Google Scholar 

  103. Chen W, Liu Y, Song L, Sommerfeld M, Hu Q (2020) Automated accelerated solvent extraction method for total lipid analysis of microalgae. Algal Res 51:102080. https://doi.org/10.1016/j.algal.2020.102080

    Article  Google Scholar 

  104. Günerken E, D’Hondt E, Eppink MHM et al (2015) Cell disruption for microalgae biorefineries. Biotechnol Adv 33:243–260. https://doi.org/10.1016/j.biotechadv.2015.01.008

    Article  CAS  PubMed  Google Scholar 

  105. Gerardo ML, Van Den Hende S, Vervaeren H et al (2015) Harvesting of microalgae within a biorefinery approach: a review of the developments and case studies from pilot-plants. Algal Res 11:248–262. https://doi.org/10.1016/j.algal.2015.06.019

    Article  Google Scholar 

  106. Zhang Y, Kong X, Wang Z, Sun Y, Zhu S, Li L, Lv P (2018) Optimization of enzymatic hydrolysis for effective lipid extraction from microalgae Scenedesmus sp. Renew Energy 125:1049–1057. https://doi.org/10.1016/j.renene.2018.01.078

    Article  CAS  Google Scholar 

  107. Huo S, Wang Z, Cui F, Zou B, Zhao P, Yuan Z (2015) Enzyme-assisted extraction of oil from wet microalgae Scenedesmus sp. G4. Energies 8:8165–8174. https://doi.org/10.3390/en8088165

    Article  CAS  Google Scholar 

  108. Wu C, Xiao Y, Lin W, Li J, Zhang S, Zhu J, Rong J (2017) Aqueous enzymatic process for cell wall degradation and lipid extraction from Nannochloropsis sp. Bioresour Technol 223:312–316. https://doi.org/10.1016/j.biortech.2016.10.063

    Article  CAS  PubMed  Google Scholar 

  109. Zuorro A, Malavasi V, Cao G, Lavecchia R (2018) Use of cell wall degrading enzymes to improve the recovery of lipids from Chlorella sorokiniana. Chem Eng J 0–1. https://doi.org/10.1016/j.cej.2018.11.023, 377, 120325

  110. Olmstead ILD, Kentish SE, Scales PJ, Martin GJO (2013) Low solvent, low temperature method for extracting biodiesel lipids from concentrated microalgal biomass. Bioresour Technol 148:615–619. https://doi.org/10.1016/j.biortech.2013.09.022

    Article  CAS  PubMed  Google Scholar 

  111. Vieira de Mendonça H, Assemany P, Abreu M, Couto E, Maciel AM, Duarte RL, Barbosa dos Santos MG, Reis A (2021) Microalgae in a global world: new solutions for old problems? Renew Energy 165:842–862. https://doi.org/10.1016/j.renene.2020.11.014

    Article  CAS  Google Scholar 

  112. Ma Y, Wang P, Wang Y, Liu S, Wang Q, Wang Y (2020) Fermentable sugar production from wet microalgae residual after biodiesel production assisted by radio frequency heating. Renew Energy 155:827–836. https://doi.org/10.1016/j.renene.2020.03.176

    Article  CAS  Google Scholar 

  113. Assemany PP, Calijuri ML, De Aguiar Do Couto E et al (2018) Energy recovery in high rate algal pond used for domestic wastewater treatment. Water Sci Technol 78:12–19. https://doi.org/10.2166/wst.2017.570

    Article  CAS  PubMed  Google Scholar 

  114. Adeniyi OM, Azimov U, Burluka A (2018) Algae biofuel: current status and future applications. Renew Sust Energ Rev 90:316–335. https://doi.org/10.1016/j.rser.2018.03.067

    Article  Google Scholar 

  115. Hossain FM, Rainey TJ, Ristovski Z, Brown RJ (2018) Performance and exhaust emissions of diesel engines using microalgae FAME and the prospects for microalgae HTL biocrude. Renew Sust Energ Rev 82:4269–4278. https://doi.org/10.1016/j.rser.2017.06.026

    Article  CAS  Google Scholar 

  116. Rawat I, Ranjith Kumar R, Mutanda T, Bux F (2011) Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl Energy 88:3411–3424. https://doi.org/10.1016/j.apenergy.2010.11.025

    Article  CAS  Google Scholar 

  117. Sun S, Hu C, Gao S, Zhao Y, Xu J (2019) Influence of three microalgal-based cultivation technologies on different domestic wastewater and biogas purification in photobioreactor. Water Environ Res 91:679–688. https://doi.org/10.1002/wer.1097

    Article  CAS  PubMed  Google Scholar 

  118. Demirbaş A (2001) Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Convers Manag 42:1357–1378. https://doi.org/10.1016/S0196-8904(00)00137-0

    Article  Google Scholar 

  119. Gollakota ARK, Kawale HD, Kishore N, Gu S (2018) Corrigendum to “a review on hydrothermal liquefaction of biomass” [Renew Sustain Energy Rev 81 (2018) 1378 – 1392]. Renew Sust Energ Rev 98:515–517. https://doi.org/10.1016/j.rser.2018.08.047

  120. Ehimen EA, Sun ZF, Carrington CG (2010) Variables affecting the in situ transesterification of microalgae lipids. Fuel 89:677–684. https://doi.org/10.1016/j.fuel.2009.10.011

    Article  CAS  Google Scholar 

  121. Miao X, Wu Q, Yang C (2004) Fast pyrolysis of microalgae to produce renewable fuels. J Anal Appl Pyrolysis 71:855–863. https://doi.org/10.1016/j.jaap.2003.11.004

    Article  CAS  Google Scholar 

  122. Bridgwater AV, Peacocke GVC (2000) Fast pyrolysis processes for biomass. Renew Sust Energ Rev 4:1–73. https://doi.org/10.1016/S1364-0321(99)00007-6

    Article  CAS  Google Scholar 

  123. Onay O, Kockar OM (2003) Slow, fast and flash pyrolysis of rapeseed. Renew Energy 28:2417–2433. https://doi.org/10.1016/S0960-1481(03)00137-X

    Article  CAS  Google Scholar 

  124. Biller P, Ross AB (2011) Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content. Bioresour Technol 102:215–225. https://doi.org/10.1016/j.biortech.2010.06.028

    Article  CAS  PubMed  Google Scholar 

  125. Couto EA, Pinto F, Varela F, Reis A, Costa P, Calijuri ML (2018) Hydrothermal liquefaction of biomass produced from domestic sewage treatment in high-rate ponds. Renew Energy 118:644–653. https://doi.org/10.1016/j.renene.2017.11.041

    Article  CAS  Google Scholar 

  126. Xu YP, Duan PG, Wang F (2015) Hydrothermal processing of macroalgae for producing crude bio-oil. Fuel Process Technol 130:268–274. https://doi.org/10.1016/j.fuproc.2014.10.028

    Article  CAS  Google Scholar 

  127. Hossain F, Kosinkova J, Brown R, Ristovski Z, Hankamer B, Stephens E, Rainey T (2017) Experimental investigations of physical and chemical properties for microalgae HTL bio-crude using a large batch reactor. Energies 10:467. https://doi.org/10.3390/en10040467

    Article  CAS  Google Scholar 

  128. Razon LF, Tan RR (2011) Net energy analysis of the production of biodiesel and biogas from the microalgae: Haematococcus pluvialis and Nannochloropsis. Appl Energy 88:3507–3514. https://doi.org/10.1016/j.apenergy.2010.12.052

    Article  CAS  Google Scholar 

  129. Stephenson AL, Kazamia E, Dennis JS, Howe CJ, Scott SA, Smith AG (2010) Life-cycle assessment of potential algal biodiesel production in the united kingdom: a comparison of raceways and air-lift tubular bioreactors. Energy Fuel 24:4062–4077. https://doi.org/10.1021/ef1003123

    Article  CAS  Google Scholar 

  130. Patel AK, Joun J, Sim SJ (2020) A sustainable mixotrophic microalgae cultivation from dairy wastes for carbon credit, bioremediation and lucrative biofuels. Bioresour Technol 313:123681. https://doi.org/10.1016/j.biortech.2020.123681

    Article  CAS  PubMed  Google Scholar 

  131. Lau PS, Tam NFY, Wong YS (1995) Effect of algal density on nutrient removal from primary settled wastewater. Environ Pollut 89:59–66. https://doi.org/10.1016/0269-7491(94)00044-E

    Article  CAS  Google Scholar 

  132. Ferro L, Gentili FG, Funk C (2018) Isolation and characterization of microalgal strains for biomass production and wastewater reclamation in Northern Sweden. Algal Res 32:44–53. https://doi.org/10.1016/j.algal.2018.03.006

    Article  Google Scholar 

  133. Ferro L, Gorzsás A, Gentili FG, Funk C (2018) Subarctic microalgal strains treat wastewater and produce biomass at low temperature and short photoperiod. Algal Res 35:160–167. https://doi.org/10.1016/j.algal.2018.08.031

    Article  Google Scholar 

  134. Ling Y, Sun L ping, Wang S ying, et al. (2019) Cultivation of oleaginous microalga Scenedesmus obliquus coupled with wastewater treatment for enhanced biomass and lipid production. Biochem Eng J 148:162–169. https://doi.org/10.1016/j.bej.2019.05.012

    Article  CAS  Google Scholar 

  135. Lv J, Wang X, Feng J, Liu Q, Nan F, Liu X, Xie S (2019) Biomass production and nutrients removal from non-sterile municipal wastewater and cattle farm wastewater inoculated with Chlorococcum sp. GD J Chem Technol Biotechnol 94:2580–2588. https://doi.org/10.1002/jctb.6054

    Article  CAS  Google Scholar 

  136. Cruz I, Bashan Y, Hernàndez-Carmona G, De-Bashan LE (2013) Biological deterioration of alginate beads containing immobilized microalgae and bacteria during tertiary wastewater treatment. Appl Microbiol Biotechnol 97:9847–9858. https://doi.org/10.1007/s00253-013-4703-6

    Article  CAS  PubMed  Google Scholar 

  137. Hemalatha M, Venkata Mohan S (2016) Microalgae cultivation as tertiary unit operation for treatment of pharmaceutical wastewater associated with lipid production. Bioresour Technol 215:117–122. https://doi.org/10.1016/j.biortech.2016.04.101

    Article  CAS  PubMed  Google Scholar 

  138. Hena S, Fatimah S, Tabassum S (2015) Cultivation of algae consortium in a dairy farm wastewater for biodiesel production. Water Resour Ind 10:1–14. https://doi.org/10.1016/j.wri.2015.02.002

    Article  Google Scholar 

  139. Tejido-Nuñez Y, Aymerich E, Sancho L, Refardt D (2019) Treatment of aquaculture effluent with Chlorella vulgaris and Tetradesmus obliquus: the effect of pretreatment on microalgae growth and nutrient removal efficiency. Ecol Eng 136:1–9. https://doi.org/10.1016/j.ecoleng.2019.05.021

    Article  Google Scholar 

  140. Qu W, Zhang C, Zhang Y, Ho SH (2019) Optimizing real swine wastewater treatment with maximum carbohydrate production by a newly isolated indigenous microalga Parachlorella kessleri QWY28. Bioresour Technol 289. https://doi.org/10.1016/j.biortech.2019.121702

  141. Luo L zao, Shao Y, Luo S, et al. (2019) Nutrient removal from piggery wastewater by Desmodesmus sp. CHX1 and its cultivation conditions optimization. Environ Technol (United Kingdom) 40:2739–2746. https://doi.org/10.1080/09593330.2018.1449903

    Article  CAS  Google Scholar 

  142. Kamyab H, Din MFM, Keyvanfar A, Majid MZA, Talaiekhozani A, Shafaghat A, Lee CT, Shiun LJ, Ismail HH (2015) Efficiency of microalgae Chlamydomonas on the removal of pollutants from palm oil mill effluent (POME). Energy Procedia 75:2400–2408. https://doi.org/10.1016/j.egypro.2015.07.190

    Article  CAS  Google Scholar 

  143. Tango MD, Calijuri ML, Assemany PP, De Aguiar Do Couto E (2018) Microalgae cultivation in agro-industrial effluents for biodiesel application: effects of the availability of nutrients. Water Sci Technol 78:57–68. https://doi.org/10.2166/wst.2018.180

    Article  CAS  PubMed  Google Scholar 

  144. Assemany PP, Calijuri ML, Tango MD, Couto EA (2016) Energy potential of algal biomass cultivated in a photobioreactor using effluent from a meat processing plant. Algal Res 17:53–60. https://doi.org/10.1016/j.algal.2016.04.018

    Article  Google Scholar 

  145. dos Santos MGB, Duarte RL, Maciel AM, Abreu M, Reis A, de Mendonça HV (2020) Microalgae biomass production for biofuels in Brazilian scenario: a critical review. Bioenergy Res 14:23–42. https://doi.org/10.1007/s12155-020-10180-1

    Article  Google Scholar 

  146. Murujew O, Whitton R, Kube M et al (2019) Recovery and reuse of alginate in an immobilized algae reactor. Environ Technol (United Kingdom) 1–10. https://doi.org/10.1080/09593330.2019.1673827

  147. Cheirsilp B, Thawechai T, Prasertsan P (2017) Immobilized oleaginous microalgae for production of lipid and phytoremediation of secondary effluent from palm oil mill in fluidized bed photobioreactor. Bioresour Technol 241:787–794. https://doi.org/10.1016/j.biortech.2017.06.016

    Article  CAS  PubMed  Google Scholar 

  148. Xin C, Addy MM, Zhao J, Cheng Y, Cheng S, Mu D, Liu Y, Ding R, Chen P, Ruan R (2016) Comprehensive techno-economic analysis of wastewater-based algal biofuel production: a case study. Bioresour Technol 211:584–593. https://doi.org/10.1016/j.biortech.2016.03.102

    Article  CAS  PubMed  Google Scholar 

  149. Kern JD, Hise AM, Characklis GW, Gerlach R, Viamajala S, Gardner RD (2017) Using life cycle assessment and techno-economic analysis in a real options framework to inform the design of algal biofuel production facilities. Bioresour Technol 225:418–428. https://doi.org/10.1016/j.biortech.2016.11.116

    Article  CAS  PubMed  Google Scholar 

  150. Juneja A, Murthy GS (2017) Evaluating the potential of renewable diesel production from algae cultured on wastewater: techno-economic analysis and life cycle assessment. AIMS Energy 5:239–257. https://doi.org/10.3934/energy.2017.2.239

    Article  CAS  Google Scholar 

  151. Kroumov AD, Scheufele FB, Trigueros DEG et al (2017) Modeling and technoeconomic analysis of algae for bioenergy and coproducts. Algal Green Chem:201–241. https://doi.org/10.1016/B978-0-444-63784-0.00011-4

  152. Amer L, Adhikari B, Pellegrino J (2011) Technoeconomic analysis of five microalgae-to-biofuels processes of varying complexity. Bioresour Technol 102:9350–9359. https://doi.org/10.1016/j.biortech.2011.08.010

    Article  CAS  PubMed  Google Scholar 

  153. Norsker N-H, Barbosa MJ, Vermuë MH, Wijffels RH (2011) Microalgal production — a close look at the economics. Biotechnol Adv 29:24–27. https://doi.org/10.1016/j.biotechadv.2010.08.005

    Article  CAS  PubMed  Google Scholar 

  154. Delrue F, Setier PA, Sahut C, Cournac L, Roubaud A, Peltier G, Froment AK (2012) An economic, sustainability, and energetic model of biodiesel production from microalgae. Bioresour Technol 111:191–200. https://doi.org/10.1016/j.biortech.2012.02.020

    Article  CAS  PubMed  Google Scholar 

  155. Nagarajan S, Chou SK, Cao S, Wu C, Zhou Z (2013) An updated comprehensive techno-economic analysis of algae biodiesel. Bioresour Technol 145:150–156. https://doi.org/10.1016/j.biortech.2012.11.108

    Article  CAS  PubMed  Google Scholar 

  156. Wu W, Lin KH, Chang JS (2018) Economic and life-cycle greenhouse gas optimization of microalgae-to-biofuels chains. Bioresour Technol 267:550–559. https://doi.org/10.1016/j.biortech.2018.07.083

    Article  CAS  PubMed  Google Scholar 

  157. Ranganathan P, Savithri S (2019) Techno-economic analysis of microalgae-based liquid fuels production from wastewater via hydrothermal liquefaction and hydroprocessing. Bioresour Technol 284:256–265. https://doi.org/10.1016/j.biortech.2019.03.087

    Article  CAS  PubMed  Google Scholar 

  158. Xin C, Addy MM, Zhao J, Cheng Y, Ma Y, Liu S, Mu D, Liu Y, Chen P, Ruan R (2018) Waste-to-biofuel integrated system and its comprehensive techno-economic assessment in wastewater treatment plants. Bioresour Technol 250:523–531. https://doi.org/10.1016/j.biortech.2017.11.040

    Article  CAS  PubMed  Google Scholar 

  159. Slade R, Bauen A (2013) Micro-algae cultivation for biofuels: cost, energy balance, environmental impacts and future prospects. Biomass Bioenergy 53:29–38. https://doi.org/10.1016/j.biombioe.2012.12.019

    Article  Google Scholar 

  160. Wiley P, Harris L, Reinsch S, Tozzi S, Embaye T, Clark K, McKuin B, Kolber Z, Adams R, Kagawa H, Richardson TMJ, Malinowski J, Beal C, Claxton MA, Geiger E, Rask J, Campbell JE, Trent JD (2013) Microalgae cultivation using offshore membrane enclosures for growing algae (OMEGA). J Sustain Bioenergy Syst 03:18–32. https://doi.org/10.4236/jsbs.2013.31003

    Article  Google Scholar 

  161. Campbell PK, Beer T, Batten D (2011) Life cycle assessment of biodiesel production from microalgae in ponds. Bioresour Technol 102:50–56. https://doi.org/10.1016/j.biortech.2010.06.048

    Article  CAS  PubMed  Google Scholar 

  162. Tredici MR, Rodolfi L, Biondi N, Bassi N, Sampietro G (2016) Techno-economic analysis of microalgal biomass production in a 1-ha Green Wall Panel (GWP®) plant. Algal Res 19:253–263. https://doi.org/10.1016/j.algal.2016.09.005

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Mohit Aggarwal, writing — original draft preparation, data analysis and interpretation, data collection and investigation, and formal analysis. Neelancherry Remya, conceptualization, writing — review and editing, and supervision.

Corresponding author

Correspondence to Neelancherry Remya.

Ethics declarations

Conflicts of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aggarwal, M., Remya, N. The State-of-the-Art Production of Biofuel from Microalgae with Simultaneous Wastewater Treatment: Influence of Process Variables on Biofuel Yield and Production Cost. Bioenerg. Res. 15, 62–76 (2022). https://doi.org/10.1007/s12155-021-10277-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-021-10277-1

Keywords

Navigation