Skip to main content

Advertisement

Log in

Computational Models and Simulations of Cancer Metastasis

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

The dawn of the new era in precise diagnostic devices and personalized cancer treatment is intertwined with computational models capable of integrating biochemical factors and biophysical processes to simulate and predict cancer progression. In the last decade, thanks to the increase in the computational power, the development of more sophisticated and realistic models has gained attention in cancer research. These computational models can advance our fundamental understandings of the complicated processes involved in metastasis, as a challenging stage for cancer treatment, and can provide new means for developing novel tools for predicting cancer progression. Considering the potential of these models and the plethora of recent computational models of different steps of the metastasis process, this timely review provides an up-to-date outlook of novel approaches, identifies research gaps and suggests future research directions. This review focuses on physics-based approaches for modeling metastasis process and covers recent computational models and frameworks related to all steps of metastasis from primary tumor growth to secondary tumor formation. In this review, computational models and simulations are classified based on their targeted step of metastasis. Tumor growth and tumor-induced angiogenesis together are considered as a necessary primary step for the metastasis cascade that has four steps: the intravasation of an individual tumor cell into circulatory system, circulation of the cell, arrest and extravasation, and eventually colonization and formation of a metastatic tumor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chaffer CL, Weinberg RA (2011) A perspective on cancer cell metastasis. Science 331:1559–1564. https://doi.org/10.1126/science.1203543

    Article  Google Scholar 

  2. Bray F, Ferlay J, Soerjomataram I et al (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424. https://doi.org/10.3322/caac.21492

    Article  Google Scholar 

  3. Sugarbaker EV (1979) Cancer metastasis: a product of tumor-host interactions. Curr Probl Cancer 3:1–59. https://doi.org/10.1016/S0147-0272(79)80008-2

    Article  Google Scholar 

  4. Pope EL (1938) Metastasis and metastases*. Can Med Assoc J 38:244–249

    Google Scholar 

  5. Lambert AW, Pattabiraman DR, Weinberg RA (2017) Emerging biological principles of metastasis. Cell 168:670–691. https://doi.org/10.1016/j.cell.2016.11.037

    Article  Google Scholar 

  6. Rejniak KA, McCawley LJ (2010) Current trends in mathematical modeling of tumor–microenvironment interactions: a survey of tools and applications. Exp Biol Med. https://doi.org/10.1258/ebm.2009.009230

    Article  Google Scholar 

  7. Wirtz D, Konstantopoulos K, Searson PC (2011) The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nat Rev Cancer 11:512–522. https://doi.org/10.1038/nrc3080

    Article  Google Scholar 

  8. Malandrino A, Kamm RD, Moeendarbary E (2018) In vitro modeling of mechanics in cancer metastasis. ACS Biomate Sci Eng 4:294–301. https://doi.org/10.1021/acsbiomaterials.7b00041

    Article  Google Scholar 

  9. Prospective Outlook of Mechanics in Oncology | Physical Sciences in Oncology. https://physics.cancer.gov/report/workshop6.aspx. Accessed 22 Apr 2019

  10. Jain RK, Batista A (2018) A physical view of cancer. Trends in Cancer 4:257. https://doi.org/10.1016/j.trecan.2018.03.001

    Article  Google Scholar 

  11. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674. https://doi.org/10.1016/j.cell.2011.02.013

    Article  Google Scholar 

  12. Egeblad M, Nakasone ES, Werb Z (2010) Tumors as organs: complex tissues that interface with the entire organism. Dev Cell 18:884–901. https://doi.org/10.1016/j.devcel.2010.05.012

    Article  Google Scholar 

  13. Stetler-Stevenson WG, Aznavoorian S, Liotta LA. Tumor cell interactions with the extracellular matrix during invasion and metastasis. 35

  14. Gravitz L (2012) Physical scientists take on cancer. Nature 491:S49. https://doi.org/10.1038/491S49a

    Article  Google Scholar 

  15. Newton PK, Mason J, Bethel K et al (2012) A stochastic markov chain model to describe lung cancer growth and metastasis. PLoS ONE. https://doi.org/10.1371/journal.pone.0034637

    Article  Google Scholar 

  16. Cook LM, Araujo A, Pow-Sang JM et al (2016) Predictive computational modeling to define effective treatment strategies for bone metastatic prostate cancer. Sci Rep. https://doi.org/10.1038/srep29384

    Article  Google Scholar 

  17. Altrock PM, Liu LL, Michor F (2015) The mathematics of cancer: integrating quantitative models. Nat Rev Cancer 15:730–745. https://doi.org/10.1038/nrc4029

    Article  Google Scholar 

  18. Newton PK, Mason J, Bethel K et al (2013) Spreaders and sponges define metastasis in lung cancer: a markov chain monte carlo mathematical model. Cancer Res 73:2760–2769. https://doi.org/10.1158/0008-5472.CAN-12-4488

    Article  Google Scholar 

  19. Cristini V, Lowengrub J (2010) Multiscale modeling of cancer: an integrated experimental and mathematical modeling approach. Cambridge University Press, Cambridge

    Book  Google Scholar 

  20. Basanta D, Hatzikirou H, Deutsch A (2008) Studying the emergence of invasiveness in tumours using game theory. Eur Phys J B 63:393–397. https://doi.org/10.1140/epjb/e2008-00249-y

    Article  MathSciNet  MATH  Google Scholar 

  21. Gerisch A, Chaplain MAJ (2008) Mathematical modelling of cancer cell invasion of tissue: local and non-local models and the effect of adhesion. J Theor Biol 250:684–704. https://doi.org/10.1016/j.jtbi.2007.10.026

    Article  MathSciNet  MATH  Google Scholar 

  22. Katira P, Bonnecaze RT, Zaman MH (2013) Modeling the mechanics of cancer: effect of changes in cellular and extra-cellular mechanical properties. Front Oncol. https://doi.org/10.3389/fonc.2013.00145

    Article  Google Scholar 

  23. Edelman LB, Eddy JA, Price ND (2010) In silico models of cancer. Wiley Interdiscip Rev Syst Biol Med 2:438–459. https://doi.org/10.1002/wsbm.75

    Article  Google Scholar 

  24. Kolev M, Zubik-Kowal B (2011) Numerical solutions for a model of tissue invasion and migration of tumour cells. In: Computational and Mathematical Methods in Medicine. https://www.hindawi.com/journals/cmmm/2011/452320/. Accessed 30 Jan 2019

  25. Dallon JC (2000) Numerical aspects of discrete and continuum hybrid models in cell biology. Appl Numer Math 32:137–159. https://doi.org/10.1016/S0168-9274(99)00021-5

    Article  MathSciNet  MATH  Google Scholar 

  26. Metzcar J, Wang Y, Heiland R, Macklin P (2019) A review of cell-based computational modeling in cancer biology. JCO Clin Cancer Inform. https://doi.org/10.1200/CCI.18.00069

    Article  Google Scholar 

  27. De Matteis G, Graudenzi A, Antoniotti M (2013) A review of spatial computational models for multi-cellular systems, with regard to intestinal crypts and colorectal cancer development. J Math Biol 66:1409–1462. https://doi.org/10.1007/s00285-012-0539-4

    Article  MathSciNet  MATH  Google Scholar 

  28. Sanga S, Frieboes HB, Zheng X et al (2007) Predictive oncology: multidisciplinary, multi-scale in-silico modeling linking phenotype, morphology and growth. Neuroimage 37:S120–S134. https://doi.org/10.1016/j.neuroimage.2007.05.043

    Article  Google Scholar 

  29. Karolak A, Markov DA, McCawley LJ, Rejniak KA (2018) Towards personalized computational oncology: from spatial models of tumour spheroids, to organoids, to tissues. J R Soc Interface 15:20170703. https://doi.org/10.1098/rsif.2017.0703

    Article  Google Scholar 

  30. Chwalek K, Bray LJ, Werner C (2014) Tissue-engineered 3D tumor angiogenesis models: potential technologies for anti-cancer drug discovery. Adv Drug Deliv Rev 79–80:30–39. https://doi.org/10.1016/j.addr.2014.05.006

    Article  Google Scholar 

  31. Cobelli C, Carson E (2008) Introduction to modeling in physiology and medicine. Elsevier, Amsterdam

    Google Scholar 

  32. Gatenby RA, Gawlinski ET (1996) A reaction-diffusion model of cancer invasion. Cancer Res 56:5745–5753

    Google Scholar 

  33. Jeon J, Quaranta V, Cummings PT (2010) An off-lattice hybrid discrete-continuum model of tumor growth and invasion. Biophys J 98:37–47. https://doi.org/10.1016/j.bpj.2009.10.002

    Article  Google Scholar 

  34. Anderson ARA, Chaplain MAJ, Newman EL et al (2000) Mathematical modelling of tumour invasion and metastasis. J Theo Med 2:129–154. https://doi.org/10.1080/10273660008833042

    Article  MATH  Google Scholar 

  35. Lolas G, Chaplain MAJ (2006) Mathematical modelling of cancer invasion of tissue: dynamic heterogeneity. Netw Heterogeneous Media 1:399–439. https://doi.org/10.3934/nhm.2006.1.399

    Article  MathSciNet  MATH  Google Scholar 

  36. Meral G (2019) DRBEM-FDM solution of a chemotaxis–haptotaxis model for cancer invasion. J Comput Appl Math 354:299–309. https://doi.org/10.1016/j.cam.2018.04.047

    Article  MathSciNet  MATH  Google Scholar 

  37. Waldeland JO, Evje S (2018) A multiphase model for exploring tumor cell migration driven by autologous chemotaxis. Chem Eng Sci 191:268–287. https://doi.org/10.1016/j.ces.2018.06.076

    Article  Google Scholar 

  38. Preziosi L (2003) Cancer modelling and simulation. CRC Press, Boca Raton

    Book  Google Scholar 

  39. Deisboeck TS, Wang Z, Macklin P, Cristini V (2011) Multiscale cancer modeling. Annu Rev Biomed Eng 13:127–155. https://doi.org/10.1146/annurev-bioeng-071910-124729

    Article  Google Scholar 

  40. Alder BJ, Wainwright TE (1959) Studies in molecular dynamics: I: general method. J Chem Phys 31:459–466. https://doi.org/10.1063/1.1730376

    Article  MathSciNet  Google Scholar 

  41. Bellomo N, Li NK, Maini PK (2008) On the foundations of cancer modelling: selected topics, speculations, and perspectives. Math Models Methods Appl Sci 18:593–646

    Article  MathSciNet  Google Scholar 

  42. Stéphanou A, Volpert V (2016) Hybrid modelling in biology: a classification review. Math Model Nat Phenom 11:37–48. https://doi.org/10.1051/mmnp/201611103

    Article  MathSciNet  MATH  Google Scholar 

  43. Schaller G, Meyer-Hermann M (2006) Continuum versus discrete model: a comparison for multicellular tumour spheroids. Philos Trans R Soc Math Phys Eng Sci 364:1443–1464. https://doi.org/10.1098/rsta.2006.1780

    Article  MathSciNet  Google Scholar 

  44. Harding JH (1997) Mesoscopic modelling. Curr Opin Solid State Mater Sci 2:728–732. https://doi.org/10.1016/S1359-0286(97)80017-4

    Article  Google Scholar 

  45. Wolfram S (1983) Statistical mechanics of cellular automata. Rev Mod Phys 55:601–644. https://doi.org/10.1103/RevModPhys.55.601

    Article  MathSciNet  MATH  Google Scholar 

  46. Mak M, Kim T, Zaman MH, Kamm RD (2015) Multiscale mechanobiology: computational models for integrating molecules to multicellular systems. Integr Biol 7:1093–1108. https://doi.org/10.1039/c5ib00043b

    Article  Google Scholar 

  47. Wolfram S (1984) Universality and complexity in cellular automata. Phys D 10:1–35. https://doi.org/10.1016/0167-2789(84)90245-8

    Article  MathSciNet  MATH  Google Scholar 

  48. Voss-Böhme A (2012) Multi-scale modeling in morphogenesis: a critical analysis of the cellular potts model. PLoS ONE 7:e42852. https://doi.org/10.1371/journal.pone.0042852

    Article  Google Scholar 

  49. Swat MH, Thomas GL, Belmonte JM et al (2012) Chapter 13: multi-scale modeling of tissues using compucell3D. In: Asthagiri AR, Arkin AP (eds) Methods in cell biology. Academic Press, Cambridge, pp 325–366

    Chapter  Google Scholar 

  50. Graner F, Glazier JA (1992) Simulation of biological cell sorting using a two-dimensional extended Potts model. Phys Rev Lett 69:2013–2016. https://doi.org/10.1103/PhysRevLett.69.2013

    Article  Google Scholar 

  51. Teschner T-R, Könözsy L, Jenkins KW (2016) Progress in particle-based multiscale and hybrid methods for flow applications. Microfluid Nanofluid 20:68. https://doi.org/10.1007/s10404-016-1729-y

    Article  Google Scholar 

  52. Bhui R, Hayenga HN (2017) An agent-based model of leukocyte transendothelial migration during atherogenesis. PLoS Comput Biol 13:e1005523. https://doi.org/10.1371/journal.pcbi.1005523

    Article  Google Scholar 

  53. B. Liu M, Liu GR, W. Zhou L, Z. Chang J, (2014) Dissipative particle dynamics (DPD): an overview and recent developments. Arch Comput Methods Eng. https://doi.org/10.1007/s11831-014-9124-x

    Article  MATH  Google Scholar 

  54. Español P, Warren PB (2017) Perspective: dissipative particle dynamics. J Chem Phys 146:150901. https://doi.org/10.1063/1.4979514

    Article  Google Scholar 

  55. Chopard B, Ouared R, Deutsch A et al (2010) Lattice-gas cellular automaton models for biology: from fluids to cells. Acta Biotheor 58:329–340. https://doi.org/10.1007/s10441-010-9118-5

    Article  Google Scholar 

  56. Moeendarbary E, Ng TY, Zangeneh M (2009) Dissipative particle dynamics: introduction, methodology and complex fluid applications—a review. Int J Appl Mech 01:737–763. https://doi.org/10.1142/S1758825109000381

    Article  Google Scholar 

  57. Basan M, Prost J, Joanny J-F, Elgeti J (2011) Dissipative particle dynamics simulations for biological tissues: rheology and competition. Phys Biol 8:026014. https://doi.org/10.1088/1478-3975/8/2/026014

    Article  Google Scholar 

  58. Friedman R, Boye K, Flatmark K (2013) Molecular modelling and simulations in cancer research. Biochim Biophys Acta (BBA) Rev Cancer 1836:1–14. https://doi.org/10.1016/j.bbcan.2013.02.001

    Article  Google Scholar 

  59. Hoogerbrugge PJ, Koelman JMVA (1992) Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. EPL Lett J Explor Front Phys 19:155–160. https://doi.org/10.1209/0295-5075/19/3/001

    Article  Google Scholar 

  60. Irving JH, Kirkwood JG (1950) The statistical mechanical theory of transport processes: IV: the equations of hydrodynamics. J Chem Phys 18:817–829. https://doi.org/10.1063/1.1747782

    Article  MathSciNet  Google Scholar 

  61. Franssen LC, Lorenzi T, Burgess AEF, Chaplain MAJ (2019) A Mathematical framework for modelling the metastatic spread of cancer. Bull Math Biol 81:1965–2010. https://doi.org/10.1007/s11538-019-00597-x

    Article  MathSciNet  MATH  Google Scholar 

  62. Bielenberg DR, Zetter BR (2015) The contribution of angiogenesis to the process of metastasis. Cancer J 21:267–273. https://doi.org/10.1097/PPO.0000000000000138

    Article  Google Scholar 

  63. Tien Y-W, Chang K-J, Jeng Y-M et al (2001) Tumor angiogenesis and its possible role in intravasation of colorectal epithelial cells. Clin Cancer Res 7:1627–1632

    Google Scholar 

  64. Liotta LA, Kleinerman J, Saldel GM (1976) The significance of hematogenous tumor cell clumps in the metastatic process. Cancer Res 36:889–894

    Google Scholar 

  65. Wittekind C, Neid M (2005) Cancer invasion and metastasis. Oncology 69(Suppl 1):14–16. https://doi.org/10.1159/000086626

    Article  Google Scholar 

  66. Zetter BR (1998) Angiogenesis and tumor metastasis. Annu Rev Med 49:407–424. https://doi.org/10.1146/annurev.med.49.1.407

    Article  Google Scholar 

  67. Frieboes HB, Jin F, Chuang Y-L et al (2010) Three-dimensional multispecies nonlinear tumor growth—II: tumor invasion and angiogenesis. J Theor Biol 264:1254–1278. https://doi.org/10.1016/j.jtbi.2010.02.036

    Article  MathSciNet  MATH  Google Scholar 

  68. Bearer EL, Lowengrub JS, Frieboes HB et al (2009) Multiparameter computational modeling of tumor invasion. Cancer Res 69:4493–4501. https://doi.org/10.1158/0008-5472.CAN-08-3834

    Article  Google Scholar 

  69. Ayati BP, Webb GF, Anderson ARA (2006) Computational methods and results for structured multiscale models of tumor invasion. Multiscale Model Simul 5:1–20. https://doi.org/10.1137/050629215

    Article  MathSciNet  MATH  Google Scholar 

  70. Bresch D, Colin T, Grenier E et al (2010) Computational modeling of solid tumor growth: the avascular stage. SIAM J Sci Comput 32:2321–2344. https://doi.org/10.1137/070708895

    Article  MathSciNet  MATH  Google Scholar 

  71. Ambrosi D, Preziosi L (2002) On the closure of mass balance models for tumor growth. Math Models Methods Appl Sci 12:737–754. https://doi.org/10.1142/S0218202502001878

    Article  MathSciNet  MATH  Google Scholar 

  72. Anderson ARA, Chaplain MAJ, McDougall S (2012) A hybrid discrete-continuum model of tumour induced angiogenesis. In: Jackson TL (ed) Modeling tumor vasculature: molecular, cellular, and tissue level aspects and implications. Springer, New York, pp 105–133

    Chapter  Google Scholar 

  73. Anderson ARA, Chaplain MAJ (1998) Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull Math Biol 60:857–899. https://doi.org/10.1006/bulm.1998.0042

    Article  MATH  Google Scholar 

  74. Araujo R (2004) A history of the study of solid tumour growth: the contribution of mathematical modelling. Bull Math Biol 66:1039–1091. https://doi.org/10.1016/j.bulm.2003.11.002

    Article  MathSciNet  MATH  Google Scholar 

  75. Byrne HM (2010) Dissecting cancer through mathematics: from the cell to the animal model. Nat Rev Cancer 10:221–230. https://doi.org/10.1038/nrc2808

    Article  Google Scholar 

  76. Roose T, Chapman SJ, Maini PK (2007) Mathematical models of avascular tumor growth. SIAM Rev 49:179–208. https://doi.org/10.1137/S0036144504446291

    Article  MathSciNet  MATH  Google Scholar 

  77. Cristini V, Frieboes HB, Gatenby R et al (2005) Morphologic instability and cancer invasion. Clin Cancer Res 11:6772–6779. https://doi.org/10.1158/1078-0432.CCR-05-0852

    Article  Google Scholar 

  78. Soltani M, Chen P (2013) Numerical modeling of interstitial fluid flow coupled with blood flow through a remodeled solid tumor microvascular network. PLoS ONE 8:e67025. https://doi.org/10.1371/journal.pone.0067025

    Article  Google Scholar 

  79. Salavati H, Soltani M, Amanpour S (2018) The pivotal role of angiogenesis in a multi-scale modeling of tumor growth exhibiting the avascular and vascular phases. Microvasc Res 119:105–116. https://doi.org/10.1016/j.mvr.2018.05.001

    Article  Google Scholar 

  80. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70. https://doi.org/10.1016/S0092-8674(00)81683-9

    Article  Google Scholar 

  81. Santos J, Monteagudo Á (2012) Study of cancer hallmarks relevance using a cellular automaton tumor growth model. In: Coello CAC, Cutello V, Deb K et al (eds) Parallel problem solving from nature: PPSN XII. Springer, Berlin, pp 489–499

    Chapter  Google Scholar 

  82. Butler J, Mackay F, Denniston C, Daley M (2016) Halting the hallmarks: a cellular automaton model of early cancer growth inhibition. Nat Comput 15:15–30. https://doi.org/10.1007/s11047-015-9508-3

    Article  MathSciNet  MATH  Google Scholar 

  83. Gödde R, Kurz H (2001) Structural and biophysical simulation of angiogenesis and vascular remodeling. Dev Dyn 220:387–401. https://doi.org/10.1002/dvdy.1118

    Article  Google Scholar 

  84. Fredrich T, Welter M, Rieger H (2017) Tumorcode - A framework to simulate vascularized tumors. https://doi.org/10.1101/216903

  85. Cytowski M, Szymanska Z (2015) Large-scale parallel simulations of 3D cell colony dynamics: the cellular environment. Comput Sci Eng 17:44–48. https://doi.org/10.1109/MCSE.2015.66

    Article  Google Scholar 

  86. Cytowski M, Szymanska Z (2014) Large-scale parallel simulations of 3D cell colony dynamics. Comput Sci Eng 16:86–95. https://doi.org/10.1109/MCSE.2014.2

    Article  Google Scholar 

  87. Cytowski M (2014) Large scale computational modelling of cellular biosystems

  88. Izaguirre JA, Chaturvedi R, Huang C et al (2004) COMPUCELL, a multi-model framework for simulation of morphogenesis. Bioinformatics 20:1129–1137. https://doi.org/10.1093/bioinformatics/bth050

    Article  Google Scholar 

  89. Cickovski TM, Chaturvedi and R, Glimm T, et al (2005) A framework for three-dimensional simulation of morphogenesis. IEEE/ACM Trans Comput Biol Bioinf 2:273–288. https://doi.org/10.1109/TCBB.2005.46

    Article  Google Scholar 

  90. Shirinifard A, Gens JS, Zaitlen BL et al (2009) 3D multi-cell simulation of tumor growth and angiogenesis. PLoS ONE 4:e7190. https://doi.org/10.1371/journal.pone.0007190

    Article  Google Scholar 

  91. Jeanquartier F, Jean-Quartier C, Cemernek D, Holzinger A (2016) In silico modeling for tumor growth visualization. BMC Syst Biol 10:59. https://doi.org/10.1186/s12918-016-0318-8

    Article  Google Scholar 

  92. Mirams GR, Arthurs CJ, Bernabeu MO et al (2013) Chaste: an open source C++ library for computational physiology and biology. PLoS Comput Biol 9:e1002970. https://doi.org/10.1371/journal.pcbi.1002970

    Article  MathSciNet  Google Scholar 

  93. Tanaka S, Sichau D, Iber D (2015) LBIBCell: a cell-based simulation environment for morphogenetic problems. Bioinformatics 31:2340–2347. https://doi.org/10.1093/bioinformatics/btv147

    Article  Google Scholar 

  94. Lee H, Smelser A, Low J et al (2017) Mechanical properties of normal breast cells and metastatic cancer cells in co-culture. Biophys J 112:124a. https://doi.org/10.1016/j.bpj.2016.11.693

    Article  Google Scholar 

  95. Yu H, Mouw JK, Weaver VM (2011) Forcing form and function: biomechanical regulation of tumor evolution. Trends Cell Biol 21:47–56. https://doi.org/10.1016/j.tcb.2010.08.015

    Article  Google Scholar 

  96. Suresh S (2007) Biomechanics and biophysics of cancer cells. Acta Biomater 3:413–438. https://doi.org/10.1016/j.actbio.2007.04.002

    Article  Google Scholar 

  97. Cross SE, Jin Y-S, Tondre J et al (2008) AFM-based analysis of human metastatic cancer cells. Nanotechnology 19:384003. https://doi.org/10.1088/0957-4484/19/38/384003

    Article  Google Scholar 

  98. Thiery JP, Sleeman JP (2006) Complex networks orchestrate epithelial–mesenchymal transitions. Nat Rev Mol Cell Biol 7:131–142. https://doi.org/10.1038/nrm1835

    Article  Google Scholar 

  99. Rejniak KA (2005) A single-cell approach in modeling the dynamics of tumor microregions. Math Biosci Eng 2:643–655

    Article  MathSciNet  Google Scholar 

  100. Rejniak KA, Wang SE, Bryce NS et al (2010) Linking changes in epithelial morphogenesis to cancer mutations using computational modeling. PLoS Comput Biol 6:e1000900. https://doi.org/10.1371/journal.pcbi.1000900

    Article  MathSciNet  Google Scholar 

  101. Rejniak KA (2016) Circulating tumor cells: when a solid tumor meets a fluid microenvironment. In: Rejniak KA (ed) Systems biology of tumor microenvironment. Springer, Cham, pp 93–106

    Chapter  Google Scholar 

  102. Moraru II, Schaff JC, Slepchenko BM et al (2008) Virtual cell modelling and simulation software environment. IET Syst Biol 2:352–362. https://doi.org/10.1049/iet-syb:20080102

    Article  Google Scholar 

  103. Slepchenko BM, Schaff JC, Macara I, Loew LM (2003) Quantitative cell biology with the Virtual Cellq. 7

  104. Akhurst RJ, Derynck R (2001) TGF-β signaling in cancer: a double-edged sword. Trends Cell Biol 11:S44–S51. https://doi.org/10.1016/S0962-8924(01)02130-4

    Article  Google Scholar 

  105. Price JT, Wilson HM, Haites NE (1996) Epidermal growth factor (EGF) Increases the in vitro invasion, motility and adhesion interactions of the primary renal carcinoma cell line, A704. Eur J Cancer 32:1977–1982. https://doi.org/10.1016/0959-8049(96)00207-9

    Article  Google Scholar 

  106. Wang Z, Birch CM, Sagotsky J, Deisboeck TS (2009) Cross-scale, cross-pathway evaluation using an agent-based non-small cell lung cancer model. Bioinformatics 25:2389–2396. https://doi.org/10.1093/bioinformatics/btp416

    Article  Google Scholar 

  107. Wang Z, Zhang L, Sagotsky J, Deisboeck TS (2007) Simulating non-small cell lung cancer with a multiscale agent-based model. Theo Biol Med Model 4:50. https://doi.org/10.1186/1742-4682-4-50

    Article  Google Scholar 

  108. Lee P, Wolgemuth CW (2016) Physical mechanisms of cancer in the transition to metastasis. Biophys J 111:256–266. https://doi.org/10.1016/j.bpj.2016.05.046

    Article  Google Scholar 

  109. Brodland GW, Veldhuis JH (2012) The mechanics of metastasis: insights from a computational model. PLoS ONE 7:e44281. https://doi.org/10.1371/journal.pone.0044281

    Article  Google Scholar 

  110. Viens D, Brodland GW (2007) A three-dimensional finite element model for the mechanics of cell-cell interactions. J Biomech Eng 129:651–657. https://doi.org/10.1115/1.2768375

    Article  Google Scholar 

  111. Ramis-Conde I, Chaplain MAJ, Anderson ARA, Drasdo D (2009) Multi-scale modelling of cancer cell intravasation: the role of cadherins in metastasis. Phys Biol 6:016008. https://doi.org/10.1088/1478-3975/6/1/016008

    Article  Google Scholar 

  112. Mitchell MJ, King MR (2013) Computational and experimental models of cancer cell response to fluid shear stress. Front Oncol. https://doi.org/10.3389/fonc.2013.00044

    Article  Google Scholar 

  113. King MR, Phillips KG, Mitrugno A et al (2015) A physical sciences network characterization of circulating tumor cell aggregate transport. Am J Physiol-Cell Physiol 308:C792–C802. https://doi.org/10.1152/ajpcell.00346.2014

    Article  Google Scholar 

  114. Xiao LL, Liu Y, Chen S, Fu BM (2017) Effects of flowing RBCs on adhesion of a circulating tumor cell in microvessels. Biomech Model Mechanobiol 16:597–610. https://doi.org/10.1007/s10237-016-0839-5

    Article  Google Scholar 

  115. Takeishi N, Imai Y, Yamaguchi T, Ishikawa T (2015) Flow of a circulating tumor cell and red blood cells in microvessels. Phys Rev E. https://doi.org/10.1103/PhysRevE.92.063011

    Article  Google Scholar 

  116. Rejniak KA (2012) Investigating dynamical deformations of tumor cells in circulation: predictions from a theoretical model. Front Oncol. https://doi.org/10.3389/fonc.2012.00111

    Article  Google Scholar 

  117. Cross SE, Jin Y-S, Rao J, Gimzewski JK (2007) Nanomechanical analysis of cells from cancer patients. Nat Nanotechnol 2:780–783. https://doi.org/10.1038/nnano.2007.388

    Article  Google Scholar 

  118. Liu Y, Liu WK (2006) Rheology of red blood cell aggregation by computer simulation. J Comput Phys 220:139–154. https://doi.org/10.1016/j.jcp.2006.05.010

    Article  MathSciNet  MATH  Google Scholar 

  119. Zhang L, Gerstenberger A, Wang X, Liu WK (2004) Immersed finite element method. Comput Methods Appl Mech Eng 193:2051–2067. https://doi.org/10.1016/j.cma.2003.12.044

    Article  MathSciNet  MATH  Google Scholar 

  120. Zhang LT, Gay M (2007) Immersed finite element method for fluid-structure interactions. J Fluids Struct 23:839–857. https://doi.org/10.1016/j.jfluidstructs.2007.01.001

    Article  Google Scholar 

  121. Morse PM (1929) Diatomic molecules according to the wave mechanics. ii. vibrational levels. Phys Rev 34:57–64. https://doi.org/10.1103/PhysRev.34.57

    Article  MATH  Google Scholar 

  122. Slater NB (1957) Classical motion under a morse potential. Nature 180:1352. https://doi.org/10.1038/1801352a0

    Article  MATH  Google Scholar 

  123. Gusenbauer M, Cimrak I, Bance S, et al A tunable cancer cell filter using magnetic beads: cellular and fluid dynamic simulations. 11

  124. Rejniak KA (2007) An immersed boundary framework for modelling the growth of individual cells: an application to the early tumour development. J Theor Biol 247:186–204. https://doi.org/10.1016/j.jtbi.2007.02.019

    Article  MathSciNet  MATH  Google Scholar 

  125. Reymond N, d’Água BB, Ridley AJ (2013) Crossing the endothelial barrier during metastasis. Nat Rev Cancer 13:858–870. https://doi.org/10.1038/nrc3628

    Article  Google Scholar 

  126. Paget S (1889) The distribution of secondary growths in cancer of the breast. The Lancet 133:571–573. https://doi.org/10.1016/S0140-6736(00)49915-0

    Article  Google Scholar 

  127. Ewing J (1919) Neoplastic diseases, A Text-book On Tumors. W.B. Saunders Company, London

    Google Scholar 

  128. Fidler IJ (2003) The pathogenesis of cancer metastasis: the “seed and soil” hypothesis revisited. Nat Rev Cancer 3:453–458. https://doi.org/10.1038/nrc1098

    Article  Google Scholar 

  129. Coman DR, Delong RP. Studies on the mechanisms of metastasis. The Distribution of Tumors in Various Organs in Relation to the Distribution of Arterial Emboli. 8

  130. Weiss L (1992) Comments on hematogenous metastatic patterns in humans as revealed by autopsy. Clin Exp Metast 10:191–199. https://doi.org/10.1007/BF00132751

    Article  Google Scholar 

  131. Dembo M, Bell GI (1987) The thermodynamics of cell adhesion. In: Bronner F, Klausner RD, Kempf C, van Renswoude J (eds) Current topics in membranes and transport. Academic Press, Cambridge, pp 71–89

    Google Scholar 

  132. Bell G (1978) Models for the specific adhesion of cells to cells. Science 200:618–627. https://doi.org/10.1126/science.347575

    Article  Google Scholar 

  133. Bell GI, Dembo M, Bongrand P (1984) Cell adhesion. Competition between nonspecific repulsion and specific bonding. Biophys J 45:1051–1064. https://doi.org/10.1016/S0006-3495(84)84252-6

    Article  Google Scholar 

  134. Hammer DA, Apte SM (1992) Simulation of cell rolling and adhesion on surfaces in shear flow: general results and analysis of selectin-mediated neutrophil adhesion. Biophys J 63:35–57

    Article  Google Scholar 

  135. Yan WW, Liu Y, Fu BM (2010) Effects of curvature and cell–cell interaction on cell adhesion in microvessels. Biomech Model Mechanobiol 9:629–640. https://doi.org/10.1007/s10237-010-0202-1

    Article  Google Scholar 

  136. Xiao LL, Yan WW, Liu Y et al (2018) Modeling cell adhesion and extravasation in microvascular system. In: Fu BM, Wright NT (eds) Molecular, cellular, and tissue engineering of the vascular system. Springer, Cham, pp 219–234

    Chapter  Google Scholar 

  137. Yan WW, Cai B, Liu Y, Fu BM (2012) Effects of wall shear stress and its gradient on tumor cell adhesion in curved microvessels. Biomech Model Mechanobiol 11:641–653. https://doi.org/10.1007/s10237-011-0339-6

    Article  Google Scholar 

  138. Takeishi N, Imai Y, Ishida S et al (2016) Cell adhesion during bullet motion in capillaries. Am J Physiol-Heart Circul Physiol 311:H395–H403. https://doi.org/10.1152/ajpheart.00241.2016

    Article  Google Scholar 

  139. Follain G, Osmani N, Azevedo AS et al (2018) Hemodynamic forces tune the arrest, adhesion, and extravasation of circulating tumor cells. Dev Cell 45:33-52.e12. https://doi.org/10.1016/j.devcel.2018.02.015

    Article  Google Scholar 

  140. Angio TK (2016). In: Cemosis. http://www.cemosis.fr/projects/angiotk/. Accessed 5 Apr 2019

  141. Hou J-M, Krebs M, Ward T et al (2011) Circulating tumor cells as a window on metastasis biology in lung cancer. Am J Pathol 178:989–996. https://doi.org/10.1016/j.ajpath.2010.12.003

    Article  Google Scholar 

  142. Anderson KJ, de Guillebon A, Hughes AD et al (2017) Effect of circulating tumor cell aggregate configuration on hemodynamic transport and wall contact. Math Biosci 294:181–194. https://doi.org/10.1016/j.mbs.2017.10.002

    Article  MathSciNet  MATH  Google Scholar 

  143. Fidler IJ, Gersten DM, Riggs CW (1977) Relationship of host immune status to tumor cell arrest, distribution, and survival in experimental metastasis. Cancer 40:46–55. https://doi.org/10.1002/1097-0142(197707)40:1%3c46::AID-CNCR2820400110%3e3.0.CO;2-T

    Article  Google Scholar 

  144. Giuliano M, Shaikh A, Lo HC et al (2018) Perspective on circulating tumor cell clusters: why it takes a village to metastasize. Cancer Res 78:845–852. https://doi.org/10.1158/0008-5472.CAN-17-2748

    Article  Google Scholar 

  145. Friedl P, Locker J, Sahai E, Segall JE (2012) Classifying collective cancer cell invasion. Nat Cell Biol 14:777–783. https://doi.org/10.1038/ncb2548

    Article  Google Scholar 

  146. Phillips KG, Lee AM, Tormoen GW et al (2015) The thrombotic potential of circulating tumor microemboli: computational modeling of circulating tumor cell-induced coagulation. Am J Physiol-Cell Physiol 308:C229–C236. https://doi.org/10.1152/ajpcell.00315.2014

    Article  Google Scholar 

  147. Guo P, Cai B, Lei M et al (2014) Differential arrest and adhesion of tumor cells and microbeads in the microvasculature. Biomech Model Mechanobiol 13:537–550. https://doi.org/10.1007/s10237-013-0515-y

    Article  Google Scholar 

  148. Gomez-Garcia MJ, Doiron AL, Steele RRM et al (2018) Nanoparticle localization in blood vessels: dependence on fluid shear stress, flow disturbances, and flow-induced changes in endothelial physiology. Nanoscale 10:15249–15261. https://doi.org/10.1039/C8NR03440K

    Article  Google Scholar 

  149. Groot RD, Warren PB (1997) Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation. J Chem Phys 107:4423–4435. https://doi.org/10.1063/1.474784

    Article  Google Scholar 

  150. Li Y, Lian Y, Zhang LT et al (2016) Cell and nanoparticle transport in tumour microvasculature: the role of size, shape and surface functionality of nanoparticles. Interface Focus. https://doi.org/10.1098/rsfs.2015.0086

    Article  Google Scholar 

  151. Xiao LL, Liu Y, Chen S, Fu BM (2016) Numerical simulation of a single cell passing through a narrow slit. Biomech Model Mechanobiol 15:1655–1667. https://doi.org/10.1007/s10237-016-0789-y

    Article  Google Scholar 

  152. Yingling M, O’Neill T, Skalak TC, Peirce-Cottler S (2005) A cellular automata model of circulating cell adhesion and transmigration in the microvaculature. In: 2005 IEEE design symposium, systems and information engineering, pp 356–361

  153. NetLogo Home Page. https://ccl.northwestern.edu/netlogo/. Accessed 19 Apr 2019

  154. Cao X, Moeendarbary E, Isermann P et al (2016) A chemomechanical model for nuclear morphology and stresses during cell transendothelial migration. Biophys J 111:1541–1552. https://doi.org/10.1016/j.bpj.2016.08.011

    Article  Google Scholar 

  155. Chen LL, Blumm N, Christakis NA et al (2009) Cancer metastasis networks and the prediction of progression patterns. Br J Cancer 101:749–758. https://doi.org/10.1038/sj.bjc.6605214

    Article  Google Scholar 

  156. Anderson ARA (2005) A hybrid mathematical model of solid tumour invasion: the importance of cell adhesion. Math Med Biol 22:163–186. https://doi.org/10.1093/imammb/dqi005

    Article  MATH  Google Scholar 

  157. Chaplain M, a. J, Lolas G, (2005) Mathematical modelling of cancer cell invasion of tissue: the role of the urokinase plasminogen activation system. Math Models Methods Appl Sci 15:1685–1734. https://doi.org/10.1142/S0218202505000947

    Article  MathSciNet  MATH  Google Scholar 

  158. Bitsouni V, Trucu D, Chaplain MAJ, Eftimie R (2018) Aggregation and travelling wave dynamics in a two-population model of cancer cell growth and invasion. Math Med Biol J IMA. https://doi.org/10.1093/imammb/dqx019

    Article  MATH  Google Scholar 

  159. Annila A, Annila E (2008) Why did life emerge? Int J Astrobiol 7:293–300. https://doi.org/10.1017/S1473550408004308

    Article  Google Scholar 

  160. Lucia U (2013) Thermodynamics and cancer stationary states. Phys A 392:3648–3653. https://doi.org/10.1016/j.physa.2013.04.033

    Article  MathSciNet  MATH  Google Scholar 

  161. Lucia U (2014) Transport processes in biological systems: Tumoral cells and human brain. Phys A 393:327–336. https://doi.org/10.1016/j.physa.2013.08.066

    Article  MathSciNet  MATH  Google Scholar 

  162. Lucia U (2013) Different chemical reaction times between normal and solid cancer cells. Med Hypotheses 81:58–61. https://doi.org/10.1016/j.mehy.2013.04.007

    Article  Google Scholar 

  163. Luo L (2009) Entropy production in a cell and reversal of entropy flow as an anticancer therapy. Front Phys China 4:122. https://doi.org/10.1007/s11467-009-0007-9

    Article  Google Scholar 

  164. Kam Y, Rejniak KA, Anderson ARA (2012) Cellular modeling of cancer invasion: Integration of in silico and in vitro approaches. J Cell Physiol 227:431–438. https://doi.org/10.1002/jcp.22766

    Article  Google Scholar 

  165. Koch TM, Münster S, Bonakdar N et al (2012) 3D traction forces in cancer cell invasion. PLoS ONE 7:e33476. https://doi.org/10.1371/journal.pone.0033476

    Article  Google Scholar 

  166. Magjarevic R, Fabry B, Koch TM et al (2009) Contractile forces during cancer cell invasion. In: Dössel O, Schlegel WC (eds) World congress on medical physics and biomedical engineering, September 7–12, 2009, Munich, Germany. Springer, Berlin, pp 85–86

    Google Scholar 

  167. Ghaffarizadeh A, Friedman SH, Macklin P (2016) BioFVM: an efficient, parallelized diffusive transport solver for 3-D biological simulations. Bioinformatics 32:1256–1258. https://doi.org/10.1093/bioinformatics/btv730

    Article  Google Scholar 

  168. Ghaffarizadeh A, Heiland R, Friedman SH et al (2018) PhysiCell: An open source physics-based cell simulator for 3-D multicellular systems. PLoS Comput Biol 14:e1005991. https://doi.org/10.1371/journal.pcbi.1005991

    Article  Google Scholar 

  169. Stoll G, Caron B, Viara E et al (2017) MaBoSS 2.0: an environment for stochastic Boolean modeling. Bioinformatics 33:2226–2228. https://doi.org/10.1093/bioinformatics/btx123

    Article  Google Scholar 

  170. Stoll G, Viara E, Barillot E, Calzone L (2012) Continuous time boolean modeling for biological signaling: application of Gillespie algorithm. BMC Syst Biol 6:116. https://doi.org/10.1186/1752-0509-6-116

    Article  Google Scholar 

  171. Letort G, Montagud A, Stoll G et al (2019) PhysiBoSS: a multi-scale agent-based modelling framework integrating physical dimension and cell signalling. Bioinformatics. https://doi.org/10.1093/bioinformatics/bty766

    Article  Google Scholar 

  172. Madsen CD, Sahai E (2010) Cancer dissemination—lessons from leukocytes. Dev Cell 19:13–26. https://doi.org/10.1016/j.devcel.2010.06.013

    Article  Google Scholar 

  173. Carey SP, Rahman A, Kraning-Rush CM et al (2015) Comparative mechanisms of cancer cell migration through 3D matrix and physiological microtracks. Am J Physiol-Cell Physiol 308:C436–C447. https://doi.org/10.1152/ajpcell.00225.2014

    Article  Google Scholar 

  174. Zaman MH, Kamm RD, Matsudaira P, Lauffenburger DA (2005) Computational model for cell migration in three-dimensional matrices. Biophys J 89:1389–1397. https://doi.org/10.1529/biophysj.105.060723

    Article  Google Scholar 

  175. Friedl P, Wolf K (2003) Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer 3:362–374. https://doi.org/10.1038/nrc1075

    Article  Google Scholar 

  176. Taking Aim at Moving Targets in Computational Cell Migration | Elsevier Enhanced Reader. https://reader.elsevier.com/reader/sd/pii/S0962892415001658?token=31BC4C2F2A756E07ABB6313B4E5A7F300A5A4FCF5373C5D9DB85D496DF5798FC5DA0305A7DA23BBFABBD865F71934984. Accessed 5 Apr 2019

  177. Iwata K, Kawasaki K, Shigesada N (2000) A dynamical model for the growth and size distribution of multiple metastatic tumors. J Theor Biol 203:177–186. https://doi.org/10.1006/jtbi.2000.1075

    Article  Google Scholar 

  178. Baratchart E, Benzekry S, Bikfalvi A et al (2015) Computational modelling of metastasis development in renal cell carcinoma. PLoS Comput Biol 11:e1004626. https://doi.org/10.1371/journal.pcbi.1004626

    Article  Google Scholar 

  179. Audigier C, Mansi T, Delingette H et al (2015) Efficient lattice boltzmann solver for patient-specific radiofrequency ablation of hepatic tumors. IEEE Trans Med Imaging 34:1576–1589. https://doi.org/10.1109/TMI.2015.2406575

    Article  Google Scholar 

  180. Karpatkin S (1981) Role of platelets in tumor cell metastases. Ann Intern Med 95:6

    Article  Google Scholar 

  181. Buettner R (2018) Platelets promoting tumor metastasis: Culprits or victims? J Thorac Dis 10:550–553. https://doi.org/10.21037/jtd.2017.12.24

    Article  Google Scholar 

  182. Leblanc R, Peyruchaud O (2016) Metastasis: new functional implications of platelets and megakaryocytes. Blood 128:24–31. https://doi.org/10.1182/blood-2016-01-636399

    Article  Google Scholar 

  183. Mahalingam M, Ugen KE, Kao K-J, Klein PA (1988) Functional role of platelets in experimental metastasis studied with cloned murine fibrosarcoma cell variants. Cancer Res 48:1460–1464

    Google Scholar 

  184. Zaman MH (2013) The role of engineering approaches in analysing cancer invasion and metastasis. Nat Rev Cancer 13:596–603. https://doi.org/10.1038/nrc3564

    Article  Google Scholar 

  185. Lowe CP (1999) An alternative approach to dissipative particle dynamics. EPL 47:145. https://doi.org/10.1209/epl/i1999-00365-x

    Article  Google Scholar 

  186. August DA, Sugarbaker PH, Schneider PD (1985) Lymphatic dissemination of hepatic metastases. Implications for the follow-up and treatment of patients with colorectal cancer. Cancer 55:1490–1494

    Article  Google Scholar 

Download references

Funding

This study was supported by a grant from the Centre for Quantitative Analysis and Modelling of The Fields Institute for Research in Mathematical Sciences.

Author information

Authors and Affiliations

Authors

Contributions

SA: Literature analysis and investigation, original draft manuscript writing and visualization. SN: Reviewing and editing. JP: Reviewing and editing. NM: Conception, design of literature classification, manuscript writing, critical revision and final approval of the manuscript.

Corresponding author

Correspondence to Nima Maftoon.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anvari, S., Nambiar, S., Pang, J. et al. Computational Models and Simulations of Cancer Metastasis. Arch Computat Methods Eng 28, 4837–4859 (2021). https://doi.org/10.1007/s11831-021-09554-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-021-09554-1

Navigation