Skip to main content
Log in

On Regularization by a Small Noise of Multidimensional Odes with Non-Lipschitz Coefficients

  • Published:
Ukrainian Mathematical Journal Aims and scope

We solve a selection problem for multidimensional SDE dX(t) = a(X𝜖(t)) dt + 𝜖σ(X𝜖(t)) dW(t), where the drift and diffusion are locally Lipschitz continuous outside a fixed hyperplane H. It is assumed that X𝜖 (0) = x0 𝜖 H, the drift a(x) has a Hölder asymptotics as x approaches H, and the limit ODE dX(t) = a(X(t)) dt does not have a unique solution. It is shown that if the drift pushes the solution away from H, then the limit process with certain probabilities selects some extreme solutions of the limit ODE. If the drift attracts the solution to H, then the limit process satisfies an ODE with certain averaged coefficients. To prove the last result, we formulate an averaging principle, which is quite general and new.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. F. Attanasio and F. Flandoli, “Zero-noise solutions of linear transport equations without uniqueness: an example,” C. R. Math. Acad. Sci. Paris, 347, 753–756 (2009).

    Article  MathSciNet  Google Scholar 

  2. R. Bafico, “On the convergence of the weak solutions of stochastic differential equations when the noise intensity goes to zero,” Boll. Unione Mat. Ital., 5, 308–324 (1980).

    MathSciNet  MATH  Google Scholar 

  3. R. Bafico and P. Baldi, “Small random perturbations of Peano phenomena,” Stochastics, 6, No. 2, 279–292 (1982).

    Article  MathSciNet  Google Scholar 

  4. R. Buckdahn, Y. Ouknine, and M. Quincampoix, “On limiting values of stochastic differential equations with small noise intensity tending to zero,” Bull. Sci. Math., 133, 229–237 (2009).

    Article  MathSciNet  Google Scholar 

  5. V. S. Borkar and K. Suresh Kumar, “A new Markov selection procedure for degenerate diffusions,” J. Theoret. Probab., 23, No. 3, 729–747 (2010).

    Article  MathSciNet  Google Scholar 

  6. F. Delarue and F. Flandoli, “The transition point in the zero noise limit for a 1D Peano example,” Discrete Contin. Dyn. Syst., 34, No. 10, 4071–4083 (2014).

    Article  MathSciNet  Google Scholar 

  7. F. Delarue, F. Flandoli, and D. Vincenzi, “Noise prevents collapse of Vlasov–Poisson point charges,” Comm. Pure Appl. Math., 67, No. 10, 1700–1736 (2014).

    Article  MathSciNet  Google Scholar 

  8. F. Delarue and M. Maurelli, Zero Noise Limit for Multidimensional SDEs Driven by a Pointy Gradient (2019), arXiv:1909.08702

  9. N. Dirr, S. Luckhaus, and M. Novaga, “A stochastic selection principle in case of fattening for curvature flow,” Calc. Var. Partial Different. Equat., 13, No. 4, 405–425 (2001).

    Article  MathSciNet  Google Scholar 

  10. H. J. Engelbert and W. Schmidt, “Strong Markov continuous local martingales and solutions of one-dimensional stochastic differential equations (Part III),” Math. Nachr., 151, No. 1, 149–197 (1991).

    Article  MathSciNet  Google Scholar 

  11. A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Inc., Englewood Cliffs, N.J. (1964).

    MATH  Google Scholar 

  12. S. Herrmann, “Phénomène de Peano et grandes déviations,” C. R. Acad. Sci. Paris, Sér. I Math., 332, No. 11, 1019–1024 (2001).

    Article  MathSciNet  Google Scholar 

  13. N. Ikeda and S. Watanabe, “Stochastic differential equations and diffusion processes,” North-Holland Mathematical Library, 24, North-Holland Publ., Amsterdam, etc. (1981).

  14. I. Karatzas and S. E. Shreve, “Brownian motion and stochastic calculus,” Graduate Texts in Mathematics, 113, Springer-Verlag, New York (1988).

  15. I. G. Krykun and S. Ya. Makhno, “The Peano phenomenon for Ito equations,” J. Math. Sci., 192, No. 4, 441–458 (2013).

    Article  MathSciNet  Google Scholar 

  16. A. Kulik, Ergodic Behavior of Markov Processes, de Gruyter, Berlin–Boston (2017).

    Book  Google Scholar 

  17. A. Kulik and I. Pavlyukevich, Moment Bounds for Dissipative Semimartingales with Heavy Jumps, http://arxiv.org/abs/2004.12449.

  18. I. Pavlyukevich and A. Pilipenko, Generalized Selection Problem with Lévy Noise (2020), arXiv: 2004.05421

  19. A. Pilipenko and F. N. Proske, “On a selection problem for small noise perturbation in the multidimensional case,” Stochast. Dynam., 18, No. 6, 1850045 (2018); DOI: https://doi.org/10.1142/S0219493718500454

    Article  MathSciNet  MATH  Google Scholar 

  20. A. Pilipenko and F. N. Proske, “On perturbations of an ODE with non-Lipschitz coefficients by a small self-similar noise,” Statist. Probab. Lett., 132, 62–73 (2018); https://doi.org/10.1016/j.spl.2017.09.005

    Article  MathSciNet  MATH  Google Scholar 

  21. D. Trevisan, “Zero noise limits using local times,” Electron. Comm. Probab., 18, No. 31, 7 pp. (2013).

    MathSciNet  MATH  Google Scholar 

  22. A. Veretennikov, “On strong solutions and explicit formulas for solutions of stochastic integral equations,” Sb. Math., 39, No. 3, 387–403 (1981).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Pilipenko.

Additional information

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 72, No. 9, pp. 1254–1285, September, 2020. Ukrainian DOI: 10.37863/umzh.v72i9.6292.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulik, A., Pilipenko, A. On Regularization by a Small Noise of Multidimensional Odes with Non-Lipschitz Coefficients. Ukr Math J 72, 1445–1481 (2021). https://doi.org/10.1007/s11253-021-01865-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-021-01865-7

Navigation