Skip to main content
Log in

Sticky-Reflected Stochastic Heat Equation Driven by Colored Noise

  • Published:
Ukrainian Mathematical Journal Aims and scope

We prove the existence of a sticky-reflected solution to the heat equation on the space interval [0, 1] driven by colored noise. The process can be interpreted as an infinite-dimensional analog of the sticky-reflected Brownian motion on the real line but, in this case, the solution obeys the ordinary stochastic heat equation, except the points where it reaches zero. The solution has no noise at zero and a drift pushes it to stay positive. The proof is based on a new approach that can also be applied to some other types of SPDEs with discontinuous coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Alonso and F. Brambila-Paz, “Lp-continuity of conditional expectations,” J. Math. Anal. Appl., 221, No. 1, 161–176 (1998).

    Article  MathSciNet  Google Scholar 

  2. D. Aldous, “Stopping times and tightness,” Ann. Probab., 6, No. 2, 335–340 (1978).

    MathSciNet  MATH  Google Scholar 

  3. S. A. Cherny and H.-J. Engelbert, “Singular stochastic differential equations,” in: Lect. Notes Math., Vol. 1858, Springer-Verlag, Berlin (2005).

  4. R. Chitashvili, “On the nonexistence of a strong solution in the boundary problem for a sticky Brownian motion,” Proc. A. Razmadze Math. Inst., 115, 17–31 (1997).

    MathSciNet  MATH  Google Scholar 

  5. N. Dunford and J. T. Schwartz, Linear Operators, Part I, General Theory, John Wiley & Sons, New York (1988).

  6. S. N. Ethier and T. G. Kurtz, “Markov processes. Characterization and convergence,” in: Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, John Wiley & Sons, New York (1986).

  7. H.-J. Engelbert and G. Peskir, “Stochastic differential equations for sticky Brownian motion,” Stochastics, 86, No. 6, 993–1021 (2014).

  8. T. Fattler, M. Grothaus, and R. Vobhall, “Construction and analysis of a sticky reflected distorted Brownian motion,” Ann. Inst. Henri Poincaré Probab. Stat., 52, No. 2, 735–762 (2016).

    Article  MathSciNet  Google Scholar 

  9. T. Funaki and S. Olla, “Fluctuations for 𝛿𝜙 interface model on a wall,” Stochast. Proc. Appl., 94, No. 1, 1–27 (2001).

    Article  MathSciNet  Google Scholar 

  10. M. Fukushima, Y. Oshima, and M. Takeda, “Dirichlet forms and symmetric Markov processes,” in: Extended ed., De Gruyter Studies in Mathematics, Vol. 19, Walter de Gruyter, Berlin (2011).

  11. T. Funaki, “Random motion of strings and related stochastic evolution equations,” Nagoya Math. J., 89, 129–193 (1983).

    Article  MathSciNet  Google Scholar 

  12. M. Grothaus and R. Vobhall, “Stochastic differential equations with sticky reflection and boundary diffusion,” Electron. J. Probab., 22, Paper No. 7 (2017).

  13. M. Grothaus and R. Vobhall, “Strong Feller property of sticky reflected distorted Brownian motion,” J. Theor. Probab., 31, No. 2, 827–852 (2018).

    Article  MathSciNet  Google Scholar 

  14. U. G. Haussmann and É. Pardoux, “Stochastic variational inequalities of parabolic type,” Appl. Math. Optim., 20, No. 2, 163–192 (1989).

    Article  MathSciNet  Google Scholar 

  15. N. Ikeda and S. Watanabe, “Stochastic differential equations and diffusion processes,” 2nd ed., in: North-Holland Mathematical Library, Vol. 24, North-Holland Publishing Co., Amsterdam; Kodansha, Ltd., Tokyo (1989).

  16. J. Jacod and A. N. Shiryaev, “Limit theorems for stochastic processes,” 2nd ed., in: Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Vol. 288, Springer-Verlag, Berlin (2003).

  17. O. Kallenberg, “Foundations of modern probability,” 2nd ed., in: Probability and Its Applications (New York), Springer, New York (2002).

  18. V. Konarovskyi, Coalescing-Fragmentating Wasserstein Dynamics: Particle Approach, arXiv:1711.03011 (2017).

  19. I. Karatzas, A. N. Shiryaev, and M. Shkolnikov, “On the one-sided Tanaka equation with drift,” Electron. Comm. Probab., 16, 664–677 (2011).

    Article  MathSciNet  Google Scholar 

  20. R. S. Liptser and A. N. Shiryaev, “Statistics of random processes, I, General theory,” in: Applications of Mathematics (New York), Vol. 5, Stochastic Modelling and Applied Probability, Springer, Berlin (2001).

  21. Zh.-M. Ma and M. Röckner, Introduction to the Theory of (Non-Symmetric) Dirichlet Forms, Springer, Berlin (1992).

  22. D. Nualart and É. Pardoux, “White noise driven quasilinear SPDEs with reflection,” Probab. Theory Related Fields, 93, No. 1, 77–89 (1992).

    Article  MathSciNet  Google Scholar 

  23. N. N. Vakhania, V. I. Tarieladze, and S. A. Chobanyan, “Probability distributions on Banach spaces,” in: Mathematics and Its Applications (Soviet Series), Vol. 14, Reidel, Dordrecht (1987).

  24. L. Zambotti, “A reflected stochastic heat equation as symmetric dynamics with respect to the 3-d Bessel bridge,” J. Funct. Anal., 180, No. 1, 195–209 (2001).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Konarovskyi.

Additional information

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 72, No. 9, pp. 1195–1231, September, 2020. Ukrainian DOI: 10.37863/umzh.v72i9.6282.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konarovskyi, V. Sticky-Reflected Stochastic Heat Equation Driven by Colored Noise. Ukr Math J 72, 1377–1419 (2021). https://doi.org/10.1007/s11253-021-01863-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-021-01863-9

Navigation