Skip to main content
Log in

On Time Inhomogeneous Stochastic Itô Equations with Drift in LD+1

  • Published:
Ukrainian Mathematical Journal Aims and scope

We prove the solvability of Itô stochastic equations with uniformly nondegenerate bounded measurable diffusion and drift in Ld+1(Rd+1). Actually, the powers of summability of the drift in x and t could be different. Our results seem to be new even if the diffusion is constant. The method of proving solvability belongs to A.V. Skorokhod. Weak uniqueness of solutions is an open problem even if the diffusion is constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. V. Anulova and G. Pragarauskas, “Weak Markov solutions of stochastic equations,” Litovsk. Mat. Sb., 17, No. 2, 5–26 (1977); English translation: Lith. Math. J., 17, No. 2, 141–155 (1977).

  2. L. Beck, F. Flandoli, M. Gubinelli, and M. Maurelli, “Stochastic ODEs and stochastic linear PDEs with critical drift: regularity, duality, and uniqueness,” Electron. J. Probab., 24, No. 136, 1–72 (2019).

    MathSciNet  MATH  Google Scholar 

  3. E. B. Dynkin, Markov Processes [in Russian], Fizmatgiz, Moscow (1963); English translation: Grundlehren Math. Wiss., Vols. 121, 122, Springer-Verlag, Berlin (1965).

  4. N. V. Krylov, “On the selection of a Markov process from a system of processes and the construction of quasi-diffusion processes,” Izv. Akad. Nauk SSSR, Ser. Mat., 37, No. 3, 691–708 (1973); English translation: Math. USSR Izv., 7, No. 3, 691–709 (1973).

  5. N. V. Krylov, Controlled Diffusion Processes [in Russian], Nauka, Moscow (1977); English translation: Stoch. Model. Appl. Probab., 14, Springer-Verlag, Berlin Heidelberg (1980).

  6. N. V. Krylov, “On estimates of the maximum of a solution of a parabolic equation and estimates of the distribution of a semimartingale,” Mat. Sb. (N.S.), 130, No. 2, 207–221 (1986); English translation: Math. USSR Sb., 58, No. 1, 207–222 (1987).

  7. N. V. Krylov, “Introduction to the theory of diffusion processes,” Amer. Math. Soc., Providence, RI (1995).

  8. N. V. Krylov, “Sobolev and viscosity solutions for fully nonlinear elliptic and parabolic equations,” Math. Surveys Monogr., 233, Amer. Math. Soc., Providence, RI (2018).

  9. N. V. Krylov, On Stochastic Equations with Drift in Ld; http://arxiv.org/abs/2001.04008.

  10. K. Nam, Stochastic Differential Equations with Critical Drifts, arXiv:1802.00074 (2018).

  11. A. I. Nazarov, “Interpolation of linear spaces and estimates for the maximum of a solution for parabolic equations,” Partial Different. Equat., Akad. Nauk SSSR, Sibirsk. Otdel., Inst. Mat., Novosibirsk (1987), pp. 50–72; English translation: On the Maximum Principle for Parabolic Equations with Unbounded Coefficients, https://arxiv.org/abs/1507.05232.

  12. N. I. Portenko, Generalized Diffusion Processes [in Russian], Nauka, Moscow (1982); English translation: Amer. Math. Soc., Providence, RI (1990).

  13. A.V. Skorokhod, Studies in the Theory of Random Processes, Kiev Univ. Press (1961); English translation: Scripta Technica, Washington (1965).

  14. D. W. Stroock and S. R. S. Varadhan, “Multidimensional diffusion processes,” Grundlehren Math. Wiss., 233, Berlin, New York, Springer-Verlag (1979).

  15. L. Xie and X. Zhang, “Ergodicity of stochastic differential equations with jumps and singular coefficients,” Ann. Inst. Poincaré Probab. Stat., 56, No. 1, 175–229 (2020).

    MathSciNet  MATH  Google Scholar 

  16. T. Yastrzhembskiy, A Note on the Strong Feller Property of Diffusion Processes; arXiv:2001.09919.

  17. I. Gyöngy and T. Martínez, “On stochastic differential equations with locally unbounded drift,” Czechoslovak Math. J., 51(126), No. 4, 763–783 (2001).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Krylov.

Additional information

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 72, No. 9, pp. 1232–1253, September, 2020. Ukrainian DOI: 10.37863/umzh.v72i9.6280.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krylov, N.V. On Time Inhomogeneous Stochastic Itô Equations with Drift in LD+1. Ukr Math J 72, 1420–1444 (2021). https://doi.org/10.1007/s11253-021-01864-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-021-01864-8

Navigation