Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Intracellular mRNA transport and localized translation

An Author Correction to this article was published on 28 April 2021

This article has been updated

Abstract

Fine-tuning cellular physiology in response to intracellular and environmental cues requires precise temporal and spatial control of gene expression. High-resolution imaging technologies to detect mRNAs and their translation state have revealed that all living organisms localize mRNAs in subcellular compartments and create translation hotspots, enabling cells to tune gene expression locally. Therefore, mRNA localization is a conserved and integral part of gene expression regulation from prokaryotic to eukaryotic cells. In this Review, we discuss the mechanisms of mRNA transport and local mRNA translation across the kingdoms of life and at organellar, subcellular and multicellular resolution. We also discuss the properties of messenger ribonucleoprotein and higher order RNA granules and how they may influence mRNA transport and local protein synthesis. Finally, we summarize the technological developments that allow us to study mRNA localization and local translation through the simultaneous detection of mRNAs and proteins in single cells, mRNA and nascent protein single-molecule imaging, and bulk RNA and protein detection methods.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: mRNA localization and local translation in single-cell and multi-cellular organisms.
Fig. 2: Subcellular mRNA localization and local translation in neurons.
Fig. 3: Modes of mRNA transport and localization in cells and organisms.
Fig. 4: Regulation of translation by RNA binding proteins.
Fig. 5: Granule composition and organization.

Similar content being viewed by others

Change history

References

  1. Jeffery, W. R., Tomlinson, C. R. & Brodeur, R. D. Localization of actin messenger RNA during early ascidian development. Dev. Biol. 99, 408–417 (1983).

    Article  CAS  PubMed  Google Scholar 

  2. Rebagliati, M. R., Weeks, D. L., Harvey, R. P. & Melton, D. A. Identification and cloning of localized maternal RNAs from Xenopus eggs. Cell 42, 769–777 (1985).

    Article  CAS  PubMed  Google Scholar 

  3. Berleth, T. et al. The role of localization of bicoid RNA in organizing the anterior pattern of the Drosophila embryo. EMBO J. 7, 1749–1756 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bopp, D., Burri, M., Baumgartner, S., Frigerio, G. & Noll, M. Conservation of a large protein domain in the segmentation gene paired and in functionally related genes of Drosophila. Cell 47, 1033–1040 (1986).

    Article  CAS  PubMed  Google Scholar 

  5. Lawrence, J. B. & Singer, R. H. Intracellular localization of messenger RNAs for cytoskeletal proteins. Cell 45, 407–415 (1986).

    Article  CAS  PubMed  Google Scholar 

  6. Long, R. M. et al. Mating type switching in yeast controlled by asymmetric localization of ASH1 mRNA. Science 277, 383–387 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Li, X., Franceschi, V. R. & Okita, T. W. Segregation of storage protein mRNAs on the rough endoplasmic reticulum membranes of rice endosperm cells. Cell 72, 869–879 (1993).

    Article  CAS  PubMed  Google Scholar 

  8. Knowles, R. B. et al. Translocation of RNA granules in living neurons. J. Neurosci. 16, 7812–7820 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Carson, J. H. et al. In Cell Polarity and Subcellular RNA Localization (ed. Richter, D.) 69–81 (Springer, 2001).

  10. Lecuyer, E. et al. Global analysis of mRNA localization reveals a prominent role in organizing cellular architecture and function. Cell 131, 174–187 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Claußen, M. et al. Global analysis of asymmetric RNA enrichment in oocytes reveals low conservation between closely related Xenopus species. Mol. Biol. Cell 26, 3777–3787 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Nevo-Dinur, K., Nussbaum-Shochat, A., Ben-Yehuda, S. & Amster-Choder, O. Translation-independent localization of mRNA in E. coli. Science 331, 1081–1084 (2011). First example of widespread mRNA localization in bacteria.

    Article  CAS  PubMed  Google Scholar 

  13. Cajigas, I. J. et al. The local transcriptome in the synaptic neuropil revealed by deep sequencing and high-resolution imaging. Neuron 74, 453–466 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zivraj, K. H. et al. Subcellular profiling reveals distinct and developmentally regulated repertoire of growth cone mRNAs. J. Neurosci. 30, 15464–15478 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mili, S., Moissoglu, K. & Macara, I. G. Genome-wide screen reveals APC-associated RNAs enriched in cell protrusions. Nature 453, 115–119 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xia, C., Fan, J., Emanuel, G., Hao, J. & Zhuang, X. Spatial transcriptome profiling by MERFISH reveals subcellular RNA compartmentalization and cell cycle-dependent gene expression. Proc. Natl Acad. Sci. USA 116, 19490–19499 (2019). Example of multiplexed error-robust FISH (MERFISH) demonstrating near-genome-wide, spatially resolved RNA profiling of individual cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mingle, L. A. et al. Localization of all seven messenger RNAs for the actin-polymerization nucleator Arp2/3 complex in the protrusions of fibroblasts. J. Cell Sci. 118, 2425–2433 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Lundberg, E. & Borner, G. H. H. Spatial proteomics: a powerful discovery tool for cell biology. Nat. Rev. Mol. Cell Biol. 20, 285–302 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Engel, K. L., Arora, A., Goering, R., Lo, H.-Y. G. & Taliaferro, J. M. Mechanisms and consequences of subcellular RNA localization across diverse cell types. Traffic 21, 404–418 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Forrest, K. M. & Gavis, E. R. Live imaging of endogenous RNA reveals a diffusion and entrapment mechanism for nanos mRNA localization in Drosophila. Curr. Biol. 13, 1159–1168 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Safieddine, A. et al. A conserved choreography of mRNAs at centrosomes reveals a localization mechanism involving active polysome transport. Preprint at bioRxiv https://doi.org/10.1101/2020.09.04.282038 (2020).

    Article  Google Scholar 

  22. Sepulveda, G. et al. Co-translational protein targeting facilitates centrosomal recruitment of PCNT during centrosome maturation in vertebrates. eLife 7, e34959 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bergalet, J. et al. Inter-dependent centrosomal co-localization of the cen and ik2 cis-Natural Antisense mRNAs in Drosophila. Cell Rep. 30, 3339–3352.e6 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Trcek, T. & Lehmann, R. Germ granules in Drosophila. Traffic 20, 650–660 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Das, S., Singer, R. H. & Yoon, Y. J. The travels of mRNAs in neurons: do they know where they are going? Curr. Opin. Neurobiol. 57, 110–116 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. van Gijtenbeek, L. A. & Kok, J. Illuminating messengers: an update and outlook on RNA visualization in bacteria. Front. Microbiol. 8, 1161 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bakshi, S., Choi, H. & Weisshaar, J. C. The spatial biology of transcription and translation in rapidly growing Escherichia coli. Front. Microbiol. 6, 636 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Fei, J. & Sharma, C. M. RNA localization in bacteria. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.RWR-0024-2018 (2018).

    Article  PubMed  Google Scholar 

  29. Toran, P. et al. Labeling native bacterial RNA in live cells. Cell Res. 24, 894–897 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. So, L. et al. General properties of transcriptional time series in Escherichia coli. Nat. Genet. 43, 554–560 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Montero Llopis, P. et al. Spatial organization of the flow of genetic information in bacteria. Nature 466, 77–81 (2010).

    Article  PubMed  CAS  Google Scholar 

  32. Moffitt, J. R., Pandey, S., Boettiger, A. N., Wang, S. & Zhuang, X. Spatial organization shapes the turnover of a bacterial transcriptome. eLife 5, e13065 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Niessing, D., Jansen, R.-P., Pohlmann, T. & Feldbrügge, M. mRNA transport in fungal top models. Wiley Interdiscip. Rev. RNA https://doi.org/10.1002/wrna.1453 (2018).

    Article  PubMed  Google Scholar 

  34. McBride, A. E. Messenger RNA transport in the opportunistic fungal pathogen Candida albicans. Curr. Genet. 63, 989–995 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shepard, K. A. et al. Widespread cytoplasmic mRNA transport in yeast: Identification of 22 bud-localized transcripts using DNA microarray analysis. Proc. Natl Acad. Sci. USA 100, 11429–11434 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bertrand, E. et al. Localization of ASH1 mRNA particles in living yeast. Mol. Cell 2, 437–445 (1998). First use of the MS2 system for real-time imaging of single mRNAs in live cells.

    Article  CAS  PubMed  Google Scholar 

  37. Takizawa, P. A., Sil, A., Swedlow, J. R., Herskowitz, I. & Vale, R. D. Actin-dependent localization of an RNA encoding a cell-fate determinant in yeast. Nature 389, 90–93 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Tutucci, E. et al. An improved MS2 system for accurate reporting of the mRNA life cycle. Nat. Methods 15, 81–89 (2018).

    Article  CAS  PubMed  Google Scholar 

  39. Gu, W., Deng, Y., Zenklusen, D. & Singer, R. H. A new yeast PUF family protein, Puf6p, represses ASH1 mRNA translation and is required for its localization. Genes Dev. 18, 1452–1465 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Paquin, N. et al. Local activation of yeast ASH1 mRNA translation through phosphorylation of Khd1p by the casein kinase Yck1p. Mol. Cell 26, 795–809 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Deng, Y., Singer, R. H. & Gu, W. Translation of ASH1 mRNA is repressed by Puf6p-Fun12p/eIF5B interaction and released by CK2 phosphorylation. Genes Dev. 22, 1037–1050 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cosma, M. P. Daughter-specific repression of Saccharomyces cerevisiae HO: Ash1 is the commander. EMBO Rep. 5, 953–957 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sil, A. & Herskowitz, I. Identification of asymmetrically localized determinant, Ash1p, required for lineage-specific transcription of the yeast HO gene. Cell 84, 711–722 (1996).

    Article  CAS  PubMed  Google Scholar 

  44. Bobola, N., Jansen, R. P., Shin, T. H. & Nasmyth, K. Asymmetric accumulation of Ash1p in postanaphase nuclei depends on a myosin and restricts yeast mating-type switching to mother cells. Cell 84, 699–709 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Elson, S. L., Noble, S. M., Solis, N. V., Filler, S. G. & Johnson, A. D. An RNA transport system in Candida albicans regulates hyphal morphology and invasive growth. PLoS Genet. 5, e1000664 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Kotani, T., Yasuda, K., Ota, R. & Yamashita, M. Cyclin B1 mRNA translation is temporally controlled through formation and disassembly of RNA granules. J. Cell Biol. 202, 1041–1055 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Groisman, I. et al. CPEB, maskin, and cyclin B1 mRNA at the mitotic apparatus: implications for local translational control of cell division. Cell 103, 435–447 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Schmid, M., Jaedicke, A., Du, T.-G. & Jansen, R.-P. Coordination of endoplasmic reticulum and mRNA localization to the yeast bud. Curr. Biol. 16, 1538–1543 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Fundakowski, J., Hermesh, O. & Jansen, R.-P. Localization of a subset of yeast mRNAs depends on inheritance of endoplasmic reticulum. Traffic 13, 1642–1652 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Kraut-Cohen, J. et al. Translation- and SRP-independent mRNA targeting to the endoplasmic reticulum in the yeast Saccharomyces cerevisiae. Mol. Biol. Cell 24, 3069–3084 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gadir, N., Haim-Vilmovsky, L., Kraut-Cohen, J. & Gerst, J. E. Localization of mRNAs coding for mitochondrial proteins in the yeast Saccharomyces cerevisiae. RNA 17, 1551–1565 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Garcia, M. et al. Mitochondria-associated yeast mRNAs and the biogenesis of molecular complexes. Mol. Biol. Cell 18, 362–368 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pizzinga, M. et al. Translation factor mRNA granules direct protein synthetic capacity to regions of polarized growth. J. Cell Biol. 218, 1564–1581 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Morales-Polanco, F. et al. Glycolytic mRNAs localise and are translated in core fermentation (CoFe) granules to fuel glucose fermentation. Preprint at bioRxiv https://doi.org/10.1101/741231 (2020).

    Article  Google Scholar 

  55. Jansen, R.-P., Niessing, D., Baumann, S. & Feldbrügge, M. mRNA transport meets membrane traffic. Trends Genet. 30, 408–417 (2014).

    Article  CAS  PubMed  Google Scholar 

  56. Kwon, S., Tisserant, C., Tulinski, M., Weiberg, A. & Feldbrügge, M. Inside-out: from endosomes to extracellular vesicles in fungal RNA transport. Fungal Biol. Rev. 34, 89–99 (2020).

    Article  Google Scholar 

  57. Baumann, S., Pohlmann, T., Jungbluth, M., Brachmann, A. & Feldbrügge, M. Kinesin-3 and dynein mediate microtubule-dependent co-transport of mRNPs and endosomes. J. Cell Sci. 125, 2740–2752 (2012).

    CAS  PubMed  Google Scholar 

  58. König, J. et al. The fungal RNA-binding protein Rrm4 mediates long-distance transport of ubi1 and rho3 mRNAs. EMBO J. 28, 1855–1866 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Pohlmann, T., Baumann, S., Haag, C., Albrecht, M. & Feldbrügge, M. A FYVE zinc finger domain protein specifically links mRNA transport to endosome trafficking. eLife 4, e06041 (2015).

    Article  PubMed Central  Google Scholar 

  60. Femino, A. M., Fay, F. S., Fogarty, K. & Singer, R. H. Visualization of single RNA transcripts in situ. Science 280, 585–590 (1998). First demonstration of single mRNA detection in situ by FISH.

    Article  CAS  PubMed  Google Scholar 

  61. Raj, A., van den Bogaard, P., Rifkin, S. A., van Oudenaarden, A. & Tyagi, S. Imaging individual mRNA molecules using multiple singly labeled probes. Nat. Methods 5, 877–879 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gavis, E. R. & Lehmann, R. Localization of nanos RNA controls embryonic polarity. Cell 71, 301–313 (1992).

    Article  CAS  PubMed  Google Scholar 

  63. Dufourt, J. et al. Imaging translation dynamics in live embryos reveals spatial heterogeneities. Preprint at bioRxiv https://doi.org/10.1101/2020.04.29.058974 (2020).

    Article  Google Scholar 

  64. Seydoux, G. The P granules of C. elegans: a genetic model for the study of RNA–protein condensates. J. Mol. Biol. 430, 4702–4710 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lee, C.-Y. S. et al. Recruitment of mRNAs to P granules by condensation with intrinsically-disordered proteins. eLife 9, e52896 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Parker, D. M. et al. mRNA localization is linked to translation regulation in the Caenorhabditis elegans germ lineage. Development 147, dev186817 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Moor, A. E. et al. Global mRNA polarization regulates translation efficiency in the intestinal epithelium. Science 357, 1299–1303 (2017). Shows that, in the intestinal epithelium, mRNA localization contributes to the polarization of the translation machinery, in turn modulating gene expression changes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hafner, A.-S., Donlin-Asp, P. G., Leitch, B., Herzog, E. & Schuman, E. M. Local protein synthesis is a ubiquitous feature of neuronal pre- and postsynaptic compartments. Science 364, eaau3644 (2019). Identified hundreds of mRNA molecules and translation machinery in axonal terminals of adult brain, indicating the existence of local protein synthesis in both presynaptic and postsynaptic compartments of neurons.

    Article  CAS  PubMed  Google Scholar 

  69. Shigeoka, T. et al. Dynamic axonal translation in developing and mature visual circuits. Cell 166, 181–192 (2016). The first study to identify the local translatome in the developing and mature nervous system.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bassell, G. J. et al. Sorting of beta-actin mRNA and protein to neurites and growth cones in culture. J. Neurosci. 18, 251–265 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Leung, K.-M. et al. Asymmetrical β-actin mRNA translation in growth cones mediates attractive turning to netrin-1. Nat. Neurosci. 9, 1247–1256 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wong, H. H.-W. et al. RNA docking and local translation regulate site-specific axon remodeling in vivo. Neuron 95, 852–868.e8 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Terenzio, M. et al. Locally translated mTOR controls axonal local translation in nerve injury. Science 359, 1416–1421 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sahoo, P. K., Smith, D. S., Perrone-Bizzozero, N. & Twiss, J. L. Axonal mRNA transport and translation at a glance. J. Cell Sci. 131, jcs196808 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Chen, F. et al. Nanoscale imaging of RNA with expansion microscopy. Nat. Methods 13, 679–684 (2016). This technique allowed the detection of RNAs with nanoscale precision in mammalian tissue by de-crowding of mRNAs and amplification of single-molecule signals.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Steward, O. & Levy, W. B. Preferential localization of polyribosomes under the base of dendritic spines in granule cells of the dentate gyrus. J. Neurosci. 2, 284–291 (1982). The first study demonstrating the presence of polyribosomes in dendritic spines by electron microscopy and proposing local translation away from the neuronal soma.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ostroff, L. E., Fiala, J. C., Allwardt, B. & Harris, K. M. Polyribosomes redistribute from dendritic shafts into spines with enlarged synapses during LTP in developing rat hippocampal slices. Neuron 35, 535–545 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Younts, T. J. et al. Presynaptic protein synthesis is required for long-term plasticity of GABA release. Neuron 92, 479–492 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Cioni, J.-M., Koppers, M. & Holt, C. E. Molecular control of local translation in axon development and maintenance. Curr. Opin. Neurobiol. 51, 86–94 (2018).

    Article  CAS  PubMed  Google Scholar 

  80. Yoon, B. C. et al. Local translation of extranuclear lamin B promotes axon maintenance. Cell 148, 752–764 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ostroff, L. E. et al. Axon TRAP reveals learning-associated alterations in cortical axonal mRNAs in the lateral amgydala. eLife 8, e51607 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Holt, C. E., Martin, K. C. & Schuman, E. M. Local translation in neurons: visualization and function. Nat. Struct. Mol. Biol. 26, 557–566 (2019).

    Article  CAS  PubMed  Google Scholar 

  83. Biever, A., Donlin-Asp, P. G. & Schuman, E. M. Local translation in neuronal processes. Curr. Opin. Neurobiol. 57, 141–148 (2019).

    Article  CAS  PubMed  Google Scholar 

  84. Kanai, Y., Dohmae, N. & Hirokawa, N. Kinesin transports RNA: isolation and characterization of an RNA-transporting granule. Neuron 43, 513–525 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Mitsumori, K., Takei, Y. & Hirokawa, N. Components of RNA granules affect their localization and dynamics in neuronal dendrites. Mol. Biol. Cell 28, 1412–1417 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kiebler, M. A. & Bassell, G. J. Neuronal RNA granules: movers and makers. Neuron 51, 685–690 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Buxbaum, A. R., Wu, B. & Singer, R. H. Single beta-actin mRNA detection in neurons reveals a mechanism for regulating its translatability. Science 343, 419–422 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wang, C., Han, B., Zhou, R. & Zhuang, X. Real-time imaging of translation on single mRNA transcripts in live cells. Cell 165, 990–1001 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Cioni, J.-M. et al. Late endosomes act as mRNA translation platforms and sustain mitochondria in axons. Cell 176, 56–72.e15 (2019). This study highlighted that the association of RNA granules with endosomes is important for the local translation of mitochondrial proteins critical for axonal survival.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Doyle, M. & Kiebler, M. A. Mechanisms of dendritic mRNA transport and its role in synaptic tagging. EMBO J. 30, 3540–3552 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Yoon, Y. J. et al. Glutamate-induced RNA localization and translation in neurons. Proc. Natl Acad. Sci. USA 113, E6877–E6886 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Park, H. Y. et al. Visualization of dynamics of single endogenous mRNA labeled in live mouse. Science 343, 422–424 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wu, B., Eliscovich, C., Yoon, Y. J. & Singer, R. H. Translation dynamics of single mRNAs in live cells and neurons. Science 352, 1430–1435 (2016). Together with refs 202,294–296, a first example of an imaging-based single-molecule mRNA translation reporter.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Turner-Bridger, B. et al. Single-molecule analysis of endogenous β-actin mRNA trafficking reveals a mechanism for compartmentalized mRNA localization in axons. Proc. Natl Acad. Sci. USA 115, E9697–E9706 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Shigeoka, T. et al. On-site ribosome remodeling by locally synthesized ribosomal proteins in axons. Cell Rep. 29, 3605–3619.e10 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Liao, Y.-C. et al. RNA granules hitchhike on lysosomes for long-distance transport, using annexin A11 as a molecular tether. Cell 179, 147–164.e20 (2019). This study demonstrates co-transport of mRNAs with lysosomes in axons, with implications in amyotrophic lateral sclerosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Bartlett, W. P. & Banker, G. A. An electron microscopic study of the development of axons and dendrites by hippocampal neurons in culture. II. Synaptic relationships. J. Neurosci. 4, 1954–1965 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Giuditta, A., Cupellot, A. & Lazzarini, G. Ribosomal RNA in the axoplasm of the squid giant axon. J. Neurochem. 34, 1757–1760 (1980).

    Article  CAS  PubMed  Google Scholar 

  99. Biever, A. et al. Monosomes actively translate synaptic mRNAs in neuronal processes. Science 367, eaay4991 (2020). A first-time demonstration of differential monosome-mediated versus polysome-mediated translation in neurons and the preference for monosome-mediated translation in distal processes.

    Article  CAS  PubMed  Google Scholar 

  100. Koppers, M. et al. Receptor-specific interactome as a hub for rapid cue-induced selective translation in axons. eLife 8, e48718 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Rangaraju, V., tom Dieck, S. & Schuman, E. M. Local translation in neuronal compartments: how local is local? EMBO Rep. 18, 693–711 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Court, F. A., Hendriks, W. T. J., MacGillavry, H. D., Alvarez, J. & van Minnen, J. Schwann cell to axon transfer of ribosomes: toward a novel understanding of the role of glia in the nervous system. J. Neurosci. 28, 11024–11029 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Twiss, J. L. & Fainzilber, M. Ribosomes in axons – scrounging from the neighbors? Trends Cell Biol. 19, 236–243 (2009).

    Article  CAS  PubMed  Google Scholar 

  104. Budnik, V., Ruiz-Cañada, C. & Wendler, F. Extracellular vesicles round off communication in the nervous system. Nat. Rev. Neurosci. 17, 160–172 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Krämer-Albers, E.-M. & Hill, A. F. Extracellular vesicles: interneural shuttles of complex messages. Curr. Opin. Neurobiol. 39, 101–107 (2016).

    Article  PubMed  CAS  Google Scholar 

  106. Willems, J. et al. ORANGE: a CRISPR/Cas9-based genome editing toolbox for epitope tagging of endogenous proteins in neurons. PLOS Biol. 18, e3000665 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Donlin-Asp, P. G., Polisseni, C., Klimek, R., Heckel, A. & Schuman, E. M. Differential regulation of local mRNA dynamics and translation following long-term potentiation and depression. Preprint at bioRxiv https://doi.org/10.1101/2020.07.08.192369 (2020).

    Article  Google Scholar 

  108. Wang, T., Hamilla, S., Cam, M., Aranda-Espinoza, H. & Mili, S. Extracellular matrix stiffness and cell contractility control RNA localization to promote cell migration. Nat. Commun. 8, 896 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Moissoglu, K., Yasuda, K., Wang, T., Chrisafis, G. & Mili, S. Translational regulation of protrusion-localized RNAs involves silencing and clustering after transport. Elife 8, e44752 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kislauskis, E. H., Zhu, X. & Singer, R. H. Sequences responsible for intracellular localization of beta-actin messenger RNA also affect cell phenotype. J. Cell Biol. 127, 441–451 (1994).

    Article  CAS  PubMed  Google Scholar 

  111. Michael, M. & Parsons, M. New perspectives on integrin-dependent adhesions. Curr. Opin. Cell Biol. 63, 31–37 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Boyde, A. & Bailey, A. Observations on the marginal ruffles of an established fibroblast-like cell line. Cell Tissue Res. 179, 225–234 (1977).

    Article  CAS  PubMed  Google Scholar 

  113. Gandin, V., Senft, D., Topisirovic, I. & Ronai, Z. A. RACK1 function in cell motility and protein synthesis. Genes Cancer 4, 369–377 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Chicurel, M. E., Singer, R. H., Meyer, C. J. & Ingber, D. E. Integrin binding and mechanical tension induce movement of mRNA and ribosomes to focal adhesions. Nature 392, 730–733 (1998).

    Article  CAS  PubMed  Google Scholar 

  115. Willett, M., Pollard, H. J., Vlasak, M. & Morley, S. J. Localization of ribosomes and translation initiation factors to talin/beta3-integrin-enriched adhesion complexes in spreading and migrating mammalian cells. Biol. Cell 102, 265–276 (2010).

    Article  CAS  PubMed  Google Scholar 

  116. Gorrini, C. et al. Fibronectin controls cap-dependent translation through β1 integrin and eukaryotic initiation factors 4 and 2 coordinated pathways. Proc. Natl Acad. Sci. USA 102, 9200–9205 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Biswas, J. et al. Zipcode binding protein 1 (ZBP1; IGF2BP1): a model for sequence-specific RNA regulation. Cold Spring Harb. Symp. Quant. Biol. 84, 1–10 (2020).

    Article  PubMed Central  Google Scholar 

  118. Ross, A. F., Oleynikov, Y., Kislauskis, E. H., Taneja, K. L. & Singer, R. H. Characterization of a beta-actin mRNA zipcode-binding protein. Mol. Cell. Biol. 17, 2158–2165 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Patel, V. L. et al. Spatial arrangement of an RNA zipcode identifies mRNAs under post-transcriptional control. Genes Dev. 26, 43–53 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Wu, B., Buxbaum, A. R., Katz, Z. B., Yoon, Y. J. & Singer, R. H. Quantifying protein-mRNA interactions in single live cells. Cell 162, 211–220 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Biswas, J. et al. The structural basis for RNA selectivity by the IMP family of RNA-binding proteins. Nat. Commun. 10, 4440 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Mukherjee, J. et al. β-Actin mRNA interactome mapping by proximity biotinylation. Proc. Natl Acad. Sci. USA 116, 12863–12872 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Song, T. et al. Specific interaction of KIF11 with ZBP1 regulates the transport of beta-actin mRNA and cell motility. J. Cell Sci. 128, 1001–1010 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Oleynikov, Y. & Singer, R. H. Real-time visualization of ZBP1 association with β-actin mRNA during transcription and localization. Curr. Biol. 13, 199–207 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Condeelis, J. & Singer, R. H. How and why does β-actin mRNA target? Biol. Cell 97, 97–110 (2005).

    Article  CAS  PubMed  Google Scholar 

  126. Huttelmaier, S. et al. Spatial regulation of beta-actin translation by Src-dependent phosphorylation of ZBP1. Nature 438, 512–515 (2005).

    Article  PubMed  CAS  Google Scholar 

  127. Warner, J. R., Knopf, P. M. & Rich, A. A multiple ribosomal structure in protein synthesis. Proc. Natl Acad. Sci. USA 49, 122–129 (1963).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Katz, Z. B. et al. Mapping translation ‘hot-spots’ in live cells by tracking single molecules of mRNA and ribosomes. eLife 5, e10415 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Mardakheh, F. K. et al. Global analysis of mRNA, translation, and protein localization: local translation is a key regulator of cell protrusions. Dev. Cell 35, 344–357 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Rangaraju, V., Lauterbach, M. & Schuman, E. M. Spatially stable mitochondrial compartments fuel local translation during plasticity. Cell 176, 73–84.e15 (2019).

    Article  CAS  PubMed  Google Scholar 

  131. Marc, P. et al. Genome-wide analysis of mRNAs targeted to yeast mitochondria. EMBO Rep. 3, 159–164 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Fazal, F. M. et al. Atlas of subcellular RNA localization revealed by APEX-Seq. Cell 178, 473–490.e26 (2019). A spatial transcriptomic approach based on direct proximity labelling to identify localized RNAs in subcellular compartments.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Tsuboi, T. et al. Mitochondrial volume fraction and translation duration impact mitochondrial mRNA localization and protein synthesis. eLife 9, e57814 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Saint-Georges, Y. et al. Yeast mitochondrial biogenesis: a role for the PUF RNA-binding protein Puf3p in mRNA localization. PLoS ONE 3, e2293 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Morita, M. et al. mTORC1 controls mitochondrial activity and biogenesis through 4E-BP-dependent translational regulation. Cell Metab. 18, 698–711 (2013).

    Article  CAS  PubMed  Google Scholar 

  136. Gandin, V. et al. nanoCAGE reveals 5’ UTR features that define specific modes of translation of functionally related MTOR-sensitive mRNAs. Genome Res. 26, 636–648 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Becker, T., Song, J. & Pfanner, N. Versatility of preprotein transfer from the cytosol to mitochondria. Trends Cell Biol. 29, 534–548 (2019).

    Article  CAS  PubMed  Google Scholar 

  138. Pagliarini, D. J. et al. A mitochondrial protein compendium elucidates complex I disease biology. Cell 134, 112–123 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Weis, B. L., Schleiff, E. & Zerges, W. Protein targeting to subcellular organelles via mRNA localization. Biochim. Biophys. Acta 1833, 260–273 (2013).

    Article  CAS  PubMed  Google Scholar 

  140. Williams, C. C., Jan, C. H. & Weissman, J. S. Targeting and plasticity of mitochondrial proteins revealed by proximity-specific ribosome profiling. Science 346, 748–751 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Vardi-Oknin, D. & Arava, Y. Characterization of factors involved in localized translation near mitochondria by ribosome-proximity labeling. Front. Cell Dev. Biol. 7, 305 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Gold, V. A., Chroscicki, P., Bragoszewski, P. & Chacinska, A. Visualization of cytosolic ribosomes on the surface of mitochondria by electron cryo-tomography. EMBO Rep. 18, 1786–1800 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Lesnik, C., Golani-Armon, A. & Arava, Y. Localized translation near the mitochondrial outer membrane: an update. RNA Biol. 12, 801–809 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Palade, G. E. A small particulate component of the cytoplasm. J. Biophys. Biochem. Cytol. 1, 59–68 (1955).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Walter, P. & Johnson, A. E. Signal sequence recognition and protein targeting to the endoplasmic reticulum membrane. Annu. Rev. Cell Biol. 10, 87–119 (1994).

    Article  CAS  PubMed  Google Scholar 

  146. Costantini, L. M., Fossati, M., Francolini, M. & Snapp, E. L. Assessing the tendency of fluorescent proteins to oligomerize under physiologic conditions. Traffic 13, 643–649 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Jagannathan, S., Reid, D. W., Cox, A. H. & Nicchitta, C. V. De novo translation initiation on membrane-bound ribosomes as a mechanism for localization of cytosolic protein mRNAs to the endoplasmic reticulum. RNA 20, 1489–1498 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Stephens, S. B. et al. Stable ribosome binding to the endoplasmic reticulum enables compartment-specific regulation of mRNA translation. Mol. Biol. Cell 16, 5819–5831 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Liao, G., Ma, X. & Liu, G. An RNA-zipcode-independent mechanism that localizes Dia1 mRNA to the perinuclear ER through interactions between Dia1 nascent peptide and Rho-GTP. J. Cell Sci. 124, 589–599 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Masibay, A. S., Qasba, P. K., Sengupta, D. N., Damewood, G. P. & Sreevalsan, T. Cell-cycle-specific and serum-dependent expression of gamma-actin mRNA in Swiss mouse 3T3 cells. Mol. Cell. Biol. 8, 2288–2294 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Voigt, F. et al. Single-molecule quantification of translation-dependent association of mRNAs with the endoplasmic reticulum. Cell Rep. 21, 3740–3753 (2017).

    Article  CAS  PubMed  Google Scholar 

  152. Halstead, J. M. et al. Translation. An RNA biosensor for imaging the first round of translation from single cells to living animals. Science 347, 1367–1671 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Unsworth, H., Raguz, S., Edwards, H. J., Higgins, C. F. & Yagüe, E. mRNA escape from stress granule sequestration is dictated by localization to the endoplasmic reticulum. FASEB J. 24, 3370–3380 (2010).

    Article  CAS  PubMed  Google Scholar 

  154. Lerner, R. S. & Nicchitta, C. V. mRNA translation is compartmentalized to the endoplasmic reticulum following physiological inhibition of cap-dependent translation. RNA 12, 775–789 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Woodruff, J. B. et al. The centrosome is a selective condensate that nucleates microtubules by concentrating tubulin. Cell 169, 1066–1077.e10 (2017).

    Article  CAS  PubMed  Google Scholar 

  156. Chouaib, R. et al. A dual protein-mRNA localization screen reveals compartmentalized translation and widespread co-translational RNA targeting. Dev. Cell 54, 773–791.e5 (2020).

    Article  CAS  PubMed  Google Scholar 

  157. Kwon, O. S. et al. Exon junction complex dependent mRNA localization is linked to centrosome organization during ciliogenesis. Nat. Commun. 12, 1351 (2020).

    Article  CAS  Google Scholar 

  158. Safieddine, A. et al. A conserved choreography of mRNAs at centrosomes reveals a localization mechanism involving active polysome transport. Nat. Commun. 12, 1352 (2020).

    Article  CAS  Google Scholar 

  159. Buxbaum, A. R., Haimovich, G. & Singer, R. H. In the right place at the right time: visualizing and understanding mRNA localization. Nat. Rev. Mol. Cell Biol. 16, 95–109 (2015).

    Article  CAS  PubMed  Google Scholar 

  160. Edelmann, F. T. et al. Molecular architecture and dynamics of ASH1 mRNA recognition by its mRNA-transport complex. Nat. Struct. Mol. Biol. 24, 152–161 (2017).

    Article  CAS  PubMed  Google Scholar 

  161. Subramanian, M. et al. G–quadruplex RNA structure as a signal for neurite mRNA targeting. EMBO Rep. 12, 697–704 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Wu, H., Zhou, J., Zhu, T., Cohen, I. & Dictenberg, J. A kinesin adapter directly mediates dendritic mRNA localization during neural development in mice. J. Biol. Chem. 295, 6605–6628 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Chartrand, P., Meng, X.-H., Singer, R. H. & Long, R. M. Structural elements required for the localization of ASH1 mRNA and of a green fluorescent protein reporter particle in vivo. Curr. Biol. 9, 333–338 (1999).

    Article  CAS  PubMed  Google Scholar 

  164. Gonzalez, I., Buonomo, S. B. C., Nasmyth, K. & von Ahsen, U. ASH1 mRNA localization in yeast involves multiple secondary structural elementsand Ash1 protein translation. Curr. Biol. 9, 337–340 (1999).

    Article  CAS  PubMed  Google Scholar 

  165. Jansen, R. P., Dowzer, C., Michaelis, C., Galova, M. & Nasmyth, K. Mother cell-specific HO expression in budding yeast depends on the unconventional myosin myo4p and other cytoplasmic proteins. Cell 84, 687–697 (1996).

    Article  CAS  PubMed  Google Scholar 

  166. Böhl, F., Kruse, C., Frank, A., Ferring, D. & Jansen, R.-P. She2p, a novel RNA-binding protein tethers ASH1 mRNA to the Myo4p myosin motor via She3p. EMBO J. 19, 5514–5524 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Long, R. M., Gu, W., Lorimer, E., Singer, R. H. & Chartrand, P. She2p is a novel RNA-binding protein that recruits the Myo4p-She3p complex to ASH1 mRNA. EMBO J. 19, 6592–6601 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Long, R. M. et al. An exclusively nuclear RNA-binding protein affects asymmetric localization of ASH1 mRNA and Ash1p in yeast. J. Cell Biol. 153, 307–318 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Takizawa, P. A. & Vale, R. D. The myosin motor, Myo4p, binds Ash1 mRNA via the adapter protein, She3p. Proc. Natl Acad. Sci. USA 97, 5273–5278 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Takizawa, P. A., DeRisi, J. L., Wilhelm, J. E. & Vale, R. D. Plasma membrane compartmentalization in yeast by messenger RNA transport and a septin diffusion barrier. Science 290, 341–344 (2000).

    Article  CAS  PubMed  Google Scholar 

  171. Katz, Z. B. et al. β-Actin mRNA compartmentalization enhances focal adhesion stability and directs cell migration. Genes Dev. 26, 1885–1890 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Das, S., Moon, H. C., Singer, R. H. & Park, H. Y. A transgenic mouse for imaging activity-dependent dynamics of endogenous Arc mRNA in live neurons. Sci. Adv. 4, eaar3448 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Dynes, J. L. & Steward, O. Dynamics of bidirectional transport of Arc mRNA in neuronal dendrites. J. Comp. Neurol. 500, 433–447 (2007).

    Article  CAS  PubMed  Google Scholar 

  174. Bauer, K. E. et al. Live cell imaging reveals 3′-UTR dependent mRNA sorting to synapses. Nat. Commun. 10, 3178 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Huotari, J. & Helenius, A. Endosome maturation. EMBO J. 30, 3481–3500 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Baumann, S., König, J., Koepke, J. & Feldbrügge, M. Endosomal transport of septin mRNA and protein indicates local translation on endosomes and is required for correct septin filamentation. EMBO Rep. 15, 94–102 (2014).

    Article  CAS  PubMed  Google Scholar 

  177. Higuchi, Y., Ashwin, P., Roger, Y. & Steinberg, G. Early endosome motility spatially organizes polysome distribution. J. Cell Biol. 204, 343–357 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Schuster, M. et al. Kinesin-3 and dynein cooperate in long-range retrograde endosome motility along a nonuniform microtubule array. MBoC 22, 3645–3657 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Steinberg, G. Endocytosis and early endosome motility in filamentous fungi. Curr. Opin. Microbiol. 20, 10–18 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Semotok, J. L. et al. Smaug recruits the CCR4/POP2/NOT deadenylase complex to trigger maternal transcript localization in the early Drosophila embryo. Curr. Biol. 15, 284–294 (2005).

    Article  CAS  PubMed  Google Scholar 

  181. Zaessinger, S., Busseau, I. & Simonelig, M. Oskar allows nanos mRNA translation in Drosophila embryos by preventing its deadenylation by Smaug/CCR4. Development 133, 4573–4583 (2006).

    Article  CAS  PubMed  Google Scholar 

  182. Chen, L. et al. Global regulation of mRNA translation and stability in the early Drosophila embryo by the Smaug RNA-binding protein. Genome Biol. 15, R4 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Bashirullah, A., Cooperstock, R. L. & Lipshitz, H. D. Spatial and temporal control of RNA stability. Proc. Natl Acad. Sci. USA 98, 7025–7028 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Semotok, J. L. et al. Drosophila maternal Hsp83 mRNA destabilization is directed by multiple SMAUG recognition elements in the open reading frame. Mol. Cell. Biol. 28, 6757–6772 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Castellana, M., Hsin-Jung Li, S. & Wingreen, N. S. Spatial organization of bacterial transcription and translation. Proc. Natl Acad. Sci. USA 113, 9286–9291 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Sun, M., Wartel, M., Cascales, E., Shaevitz, J. W. & Mignot, T. Motor-driven intracellular transport powers bacterial gliding motility. Proc. Natl Acad. Sci. USA 108, 7559–7564 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Buskila, A. A., Kannaiah, S. & Amster-Choder, O. RNA localization in bacteria. RNA Biol. 11, 1051–1060 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Wang, C., Dickinson, L. K. & Lehmann, R. Genetics of nanos localization in Drosophila. Dev. Dyn. 199, 103–115 (1994).

    Article  CAS  PubMed  Google Scholar 

  189. Kindler, S., Wang, H., Richter, D. & Tiedge, H. RNA transport and local control of translation. Annu. Rev. Cell Dev. Biol. 21, 223–245 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Bassell, G. J. & Warren, S. T. Fragile X syndrome: loss of local mRNA regulation alters synaptic development and function. Neuron 60, 201–214 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Topisirovic, I., Svitkin, Y. V., Sonenberg, N. & Shatkin, A. J. Cap and cap-binding proteins in the control of gene expression. Wiley Interdiscip. Rev. RNA 2, 277–298 (2011).

    Article  CAS  PubMed  Google Scholar 

  192. Hinnebusch, A. G. eIF3: a versatile scaffold for translation initiation complexes. Trends Biochem. Sci. 31, 553–562 (2006).

    Article  CAS  PubMed  Google Scholar 

  193. Europe PMC. Maskin is a CPEB-associated factor that transiently interacts with elF-4E. - Abstract - Europe PMC. https://europepmc.org/article/med/10635326 (2001).

  194. Richter, J. D. & Sonenberg, N. Regulation of cap-dependent translation by eIF4E inhibitory proteins. Nature 433, 477–480 (2005).

    Article  CAS  PubMed  Google Scholar 

  195. Jung, M.-Y., Lorenz, L. & Richter, J. D. Translational control by neuroguidin, a eukaryotic initiation factor 4E and CPEB binding protein. Mol. Cell. Biol. 26, 4277–4287 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Santini, E. et al. Reducing eIF4E-eIF4G interactions restores the balance between protein synthesis and actin dynamics in fragile X syndrome model mice. Sci. Signal. 10, eaan0665 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. Chen, E., Sharma, M. R., Shi, X., Agrawal, R. K. & Joseph, S. Fragile X mental retardation protein regulates translation by binding directly to the ribosome. Mol. Cell 54, 407–417 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Darnell, J. C. & Klann, E. The translation of translational control by FMRP: therapeutic targets for Fragile X syndrome. Nat. Neurosci. 16, 1530–1536 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Genuth, N. R. & Barna, M. The discovery of ribosome heterogeneity and its implications for gene regulation and organismal life. Mol. Cell 71, 364–374 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Ho, J. J. D. & Lee, S. A cap for every occasion: alternative eIF4F complexes. Trends Biochem. Sci. 41, 821–823 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Koch, A., Aguilera, L., Morisaki, T., Munsky, B. & Stasevich, T. J. Quantifying the dynamics of IRES and cap translation with single-molecule resolution in live cells. Nat. Struct. Mol. Biol. 27, 1095–1104 (2020).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  202. Pichon, X. et al. Visualization of single endogenous polysomes reveals the dynamics of translation in live human cells. J. Cell Biol. 214, 769–781 (2016). Together with refs 93,294–296, first example of imaging-based single-molecule mRNA translation reporters.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Eberwine, J., Miyashiro, K., Kacharmina, J. E. & Job, C. Local translation of classes of mRNAs that are targeted to neuronal dendrites. Proc. Natl Acad. Sci. USA 98, 7080–7085 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Ifrim, M. F., Williams, K. R. & Bassell, G. J. Single-molecule imaging of PSD-95 mRNA translation in dendrites and its dysregulation in a mouse model of fragile X syndrome. J. Neurosci. 35, 7116–7130 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Kim, T. K. et al. Dendritic glutamate receptor mRNAs show contingent local hotspot-dependent translational dynamics. Cell Rep. 5, 114–125 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Spillane, M., Ketschek, A., Merianda, T. T., Twiss, J. L. & Gallo, G. Mitochondria coordinate sites of axon branching through localized intra-axonal protein synthesis. Cell Rep. 5, 1564–1575 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Liu, B. & Qian, S.-B. Translational reprogramming in cellular stress response. Wiley Interdiscip. Rev. RNA 5, 301–315 (2014).

    Article  CAS  PubMed  Google Scholar 

  208. Guzikowski, A. R., Chen, Y. S. & Zid, B. M. Stress-induced mRNP granules: form and function of processing bodies and stress granules. Wiley Interdiscip. Rev. RNA 10, e1524 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  209. Aronov, S. et al. mRNAs encoding polarity and exocytosis factors are cotransported with the cortical endoplasmic reticulum to the incipient bud in Saccharomyces cerevisiae. Mol. Cell. Biol. 27, 3441–3455 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Shiber, A. et al. Cotranslational assembly of protein complexes in eukaryotes revealed by ribosome profiling. Nature 561, 268–272 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Eliscovich, C., Shenoy, S. M. & Singer, R. H. Imaging mRNA and protein interactions within neurons. Proc. Natl Acad. Sci. USA 114, E1875–E1884 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Padrón, A., Iwasaki, S. & Ingolia, N. T. Proximity RNA labeling by APEX-Seq reveals the organization of translation initiation complexes and repressive RNA granules. Mol. Cell 75, 875–887.e5 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  213. Jambor, H., Mueller, S., Bullock, S. L. & Ephrussi, A. A stem–loop structure directs oskar mRNA to microtubule minus ends. RNA 20, 429–439 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Meer, E. J. et al. Identification of a cis-acting element that localizes mRNA to synapses. Proc. Natl Acad. Sci. USA 109, 4639–4644 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Treeck, B. V. & Parker, R. Emerging roles for intermolecular RNA-RNA interactions in RNP assemblies. Cell 174, 791–802 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  216. Wheeler, J. R., Matheny, T., Jain, S., Abrisch, R. & Parker, R. Distinct stages in stress granule assembly and disassembly. eLife 5, e18413 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  217. Garcia-Jove Navarro, M. et al. RNA is a critical element for the sizing and the composition of phase-separated RNA–protein condensates. Nat. Commun. 10, 3230 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  218. Treeck, B. V. et al. RNA self-assembly contributes to stress granule formation and defining the stress granule transcriptome. Proc. Natl Acad. Sci. USA 115, 2734–2739 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  219. Vourekas, A., Alexiou, P., Vrettos, N., Maragkakis, M. & Mourelatos, Z. Sequence-dependent but not sequence-specific piRNA adhesion traps mRNAs to the germ plasm. Nature 531, 390–394 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Jambor, H., Brunel, C. & Ephrussi, A. Dimerization of oskar 3′ UTRs promotes hitchhiking for RNA localization in the Drosophila oocyte. RNA 17, 2049–2057 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Roden, C. & Gladfelter, A. S. RNA contributions to the form and function of biomolecular condensates. Nat. Rev. Mol. Cell Biol. 22, 183–195 (2021).

    Article  CAS  PubMed  Google Scholar 

  222. Trcek, T. et al. Sequence-independent self-assembly of germ granule mRNAs into homotypic clusters. Mol. Cell 78, 941–950.e12 (2020). This paper demonstrates the intrinsic ability of mRNAs to self-organize as homotypic assemblies within Drosophila germ granules.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Trcek, T. et al. Drosophila germ granules are structured and contain homotypic mRNA clusters. Nat. Commun. 6, 7962 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Khong, A. et al. The stress granule transcriptome reveals principles of mRNA accumulation in stress granules. Mol. Cell 68, 808–820.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Moon, S. L. et al. Multicolour single-molecule tracking of mRNA interactions with RNP granules. Nat. Cell Biol. 21, 162–168 (2019). Multicolour single-molecule mRNA tracking is used to quantify the timing and kinetics of single mRNA translation and transit to ribonucleoprotein granules during stress.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Batish, M., van den Bogaard, P., Kramer, F. R. & Tyagi, S. Neuronal mRNAs travel singly into dendrites. Proc. Natl Acad. Sci. USA 109, 4645–4650 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Matheny, T., Rao, B. S. & Parker, R. Transcriptome-wide comparison of stress granules and P-bodies reveals that translation plays a major role in RNA partitioning. Mol. Cell. Biol. 39, e00313-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  228. Aulas, A. et al. Stress-specific differences in assembly and composition of stress granules and related foci. J. Cell Sci. 130, 927–937 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  229. Youn, J.-Y. et al. High-density proximity mapping reveals the subcellular organization of mRNA-associated granules and bodies. Mol. Cell 69, 517–532.e11 (2018).

    Article  CAS  PubMed  Google Scholar 

  230. Kedersha, N. et al. Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. J. Cell Biol. 169, 871–884 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Sanders, D. W. et al. Competing protein-RNA interaction networks control multiphase intracellular organization. Cell 181, 306–324.e28 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Guillén-Boixet, J. et al. RNA-induced conformational switching and clustering of G3BP drive stress granule assembly by condensation. Cell 181, 346–361.e17 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  233. Yang, P. et al. G3BP1 is a tunable switch that triggers phase separation to assemble stress granules. Cell 181, 325–345.e28 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Iserman, C. et al. Condensation of Ded1p promotes a translational switch from housekeeping to stress protein production. Cell 181, 818–831.e19 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Tauber, D. et al. Modulation of RNA condensation by the DEAD-Box protein eIF4A. Cell 180, 411–426.e16 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Hubstenberger, A. et al. P-body purification reveals the condensation of repressed mRNA regulons. Mol. Cell 68, 144–157.e5 (2017).

    Article  CAS  PubMed  Google Scholar 

  237. Moon, S. L., Morisaki, T., Stasevich, T. J. & Parker, R. Coupling of translation quality control and mRNA targeting to stress granules. J. Cell Biol. 219, e202004120 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Pitchiaya, S. et al. Dynamic recruitment of single RNAs to processing bodies depends on RNA functionality. Mol. Cell 74, 521–533.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Courel, M. et al. GC content shapes mRNA storage and decay in human cells. eLife 8, e49708 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  240. Namkoong, S., Ho, A., Woo, Y. M., Kwak, H. & Lee, J. H. Systematic characterization of stress-induced RNA granulation. Mol. Cell 70, 175–187.e8 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Adivarahan, S. et al. Spatial organization of single mRNPs at different stages of the gene expression pathway. Mol. Cell 72, 727–738.e5 (2018). smFISH coupled with super-resolved imaging is used to study the mRNA conformation within the mRNP as a function of the translation state.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Khong, A. & Parker, R. mRNP architecture in translating and stress conditions reveals an ordered pathway of mRNP compaction. J. Cell Biol. 217, 4124–4140 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Wilbertz, J. H. et al. Single-molecule imaging of mRNA localization and regulation during the integrated stress response. Mol. Cell 73, 946–958.e7 (2019).

    Article  CAS  PubMed  Google Scholar 

  244. Mateju, D. et al. Single-molecule imaging reveals translation of mRNAs localized to stress granules. Cell 183, 1801–1812.e13 (2020).

    Article  CAS  PubMed  Google Scholar 

  245. Markmiller, S. et al. Context-dependent and disease-specific diversity in protein interactions within stress granules. Cell 172, 590–604.e13 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Wang, C. et al. Context-dependent deposition and regulation of mRNAs in P-bodies. eLife 7, e29815 (2019).

    Article  Google Scholar 

  247. Kim, N. Y. et al. Optogenetic control of mRNA localization and translation in live cells. Nat. Cell Biol. 22, 341–352 (2020).

    Article  CAS  PubMed  Google Scholar 

  248. Pichon, X., Lagha, M., Mueller, F. & Bertrand, E. A growing toolbox to image gene expression in single cells: sensitive approaches for demanding challenges. Mol. Cell 71, 468–480 (2018).

    Article  CAS  PubMed  Google Scholar 

  249. Samacoits, A. et al. A computational framework to study sub-cellular RNA localization. Nat. Commun. 9, 4584 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  250. Park, H. Y., Trcek, T., Wells, A. L., Chao, J. A. & Singer, R. H. An unbiased analysis method to quantify mRNA localization reveals its correlation with cell motility. Cell Rep. 1, 179–184 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Tian, L., Chou, H.-L., Fukuda, M., Kumamaru, T. & Okita, T. W. mRNA localization in plant cells. Plant Physiol. 182, 97–109 (2020).

    Article  CAS  PubMed  Google Scholar 

  252. Washida, H. et al. RNA targeting to a specific ER sub-domain is required for efficient transport and packaging of α-globulins to the protein storage vacuole in developing rice endosperm. Plant J. 70, 471–479 (2012).

    Article  CAS  PubMed  Google Scholar 

  253. Washida, H. et al. Identification of cis-localization elements that target glutelin RNAs to a specific subdomain of the cortical endoplasmic reticulum in rice endosperm cells. Plant Cell Physiol. 50, 1710–1714 (2009).

    Article  CAS  PubMed  Google Scholar 

  254. Hamada, S. et al. Dual regulated RNA transport pathways to the cortical region in developing rice endosperm. Plant Cell 15, 2265–2272 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Tian, L. et al. Zipcode RNA-binding proteins and membrane trafficking proteins cooperate to transport glutelin mRNAs in rice endosperm. Plant Cell 32, 2566–2581 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Michaud, M. et al. Differential targeting of VDAC3 mRNA isoforms influences mitochondria morphology. Proc. Natl Acad. Sci. USA 111, 8991–8996 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Vincent, T. et al. A genome-scale analysis of mRNAs targeting to plant mitochondria: upstream AUGs in 5′ untranslated regions reduce mitochondrial association. Plant J. 92, 1132–1142 (2017).

    Article  CAS  PubMed  Google Scholar 

  258. Gómez, G. & Pallás, V. Noncoding RNA mediated traffic of foreign mRNA into chloroplasts reveals a novel signaling mechanism in plants. PLoS ONE 5, e12269 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  259. Tian, L. & Okita, T. W. mRNA-based protein targeting to the endoplasmic reticulum and chloroplasts in plant cells. Curr. Opin. Plant Biol. 22, 77–85 (2014).

    Article  CAS  PubMed  Google Scholar 

  260. Cheng, S.-F., Huang, Y.-P., Chen, L.-H., Hsu, Y.-H. & Tsai, C.-H. Chloroplast phosphoglycerate kinase is involved in the targeting of bamboo mosaic virus to chloroplasts in Nicotiana benthamiana plants. Plant Physiol. 163, 1598–1608 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Duncan, S., Olsson, T. S. G., Hartley, M., Dean, C. & Rosa, S. A method for detecting single mRNA molecules in Arabidopsis thaliana. Plant Methods 12, 13 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  262. Tutucci, E., Livingston, N. M., Singer, R. H. & Wu, B. Imaging mRNA in vivo, from birth to death. Annu. Rev. Biophys. 47, 85–106 (2018).

    Article  CAS  PubMed  Google Scholar 

  263. Sato, H., Das, S., Singer, R. H. & Vera, M. Imaging of DNA and RNA in living eukaryotic cells to reveal spatiotemporal dynamics of gene expression. Annu. Rev. Biochem. 89, 159–187 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Vera, M., Biswas, J., Senecal, A., Singer, R. H. & Park, H. Y. Single-cell and single-molecule analysis of gene expression regulation. Annu. Rev. Genet. 50, 267–291 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Schmidt, A., Gao, G., Little, S. R., Jalihal, A. P. & Walter, N. G. Following the messenger: recent innovations in live cell single molecule fluorescence imaging. Wiley Interdiscip. Rev. RNA 11, e1587 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Tutucci, E., Vera, M. & Singer, R. H. Single-mRNA detection in living S. cerevisiae using a re-engineered MS2 system. Nat. Protoc. 13, 2268–2296 (2018).

    Article  CAS  PubMed  Google Scholar 

  267. Wu, B. et al. Synonymous modification results in high-fidelity gene expression of repetitive protein and nucleotide sequences. Genes Dev. 29, 876–886 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Chao, J. A., Patskovsky, Y., Almo, S. C. & Singer, R. H. Structural basis for the coevolution of a viral RNA-protein complex. Nat. Struct. Mol. Biol. 15, 103–105 (2008).

    Article  CAS  PubMed  Google Scholar 

  269. Lange, S. et al. Simultaneous transport of different localized mRNA species revealed by live-cell imaging. Traffic 9, 1256–1267 (2008).

    Article  CAS  PubMed  Google Scholar 

  270. Daigle, N. & Ellenberg, J. λ N -GFP: an RNA reporter system for live-cell imaging. Nat. Methods 4, 633–636 (2007).

    Article  CAS  PubMed  Google Scholar 

  271. Brodsky, A. S. & Silver, P. A. Identifying proteins that affect mRNA localization in living cells. Methods 26, 151–155 (2002).

    Article  CAS  PubMed  Google Scholar 

  272. Chen, J. et al. High efficiency of HIV-1 genomic RNA packaging and heterozygote formation revealed by single virion analysis. Proc. Natl Acad. Sci. USA 106, 13535–13540 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Los, G. V. et al. HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem. Biol. 3, 373–382 (2008).

    Article  CAS  PubMed  Google Scholar 

  274. Garcia, H. & Gregor, T. Live imaging of mRNA synthesis in Drosophila. Methods Mol. Biol. 1649, 349–357 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Lionnet, T. et al. A transgenic mouse for in vivo detection of endogenous labeled mRNA. Nat. Methods 8, 165–170 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Hocine, S., Raymond, P., Zenklusen, D., Chao, J. A. & Singer, R. H. Single-molecule analysis of gene expression using two-color RNA labeling in live yeast. Nat. Methods 10, 119–121 (2013).

    Article  CAS  PubMed  Google Scholar 

  277. Martin, R. M., Rino, J., Carvalho, C., Kirchhausen, T. & Carmo-Fonseca, M. Live-cell visualization of pre-mRNA splicing with single-molecule sensitivity. Cell Rep. 4, 1144–1155 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Strack, R. L., Disney, M. D. & Jaffrey, S. R. A superfolding Spinach2 reveals the dynamic nature of trinucleotide repeat-containing RNA. Nat. Methods 10, 1219–1224 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Filonov, G. S., Moon, J. D., Svensen, N. & Jaffrey, S. R. Broccoli: rapid selection of an RNA mimic of green fluorescent protein by fluorescence-based selection and directed evolution. J. Am. Chem. Soc. 136, 16299–16308 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Song, W. et al. Imaging RNA polymerase III transcription using a photostable RNA-fluorophore complex. Nat. Chem. Biol. 13, 1187–1194 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Dolgosheina, E. V. et al. RNA mango aptamer-fluorophore: a bright, high-affinity complex for RNA labeling and tracking. ACS Chem. Biol. 9, 2412–2420 (2014).

    Article  CAS  PubMed  Google Scholar 

  282. Mitra, J. & Ha, T. Nanomechanics and co-transcriptional folding of Spinach and Mango. Nat. Commun. 10, 4318 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  283. Tyagi, S. & Kramer, F. R. Molecular beacons: probes that fluoresce upon hybridization. Nat. Biotechnol. 14, 303–308 (1996).

    Article  CAS  PubMed  Google Scholar 

  284. Nelles, D. A. et al. Programmable RNA tracking in live cells with CRISPR/Cas9. Cell 165, 488–496 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Wang, S., Su, J.-H., Zhang, F. & Zhuang, X. An RNA-aptamer-based two-color CRISPR labeling system. Sci. Rep. 6, 26857 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Yang, L.-Z. et al. Dynamic imaging of RNA in living cells by CRISPR-Cas13 systems. Mol. Cell 76, 981–997.e7 (2019).

    Article  CAS  PubMed  Google Scholar 

  287. Garcia, J. F. & Parker, R. MS2 coat proteins bound to yeast mRNAs block 5′ to 3′ degradation and trap mRNA decay products: implications for the localization of mRNAs by MS2-MCP system. RNA 21, 1393–1395 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Haimovich, G. et al. Use of the MS2 aptamer and coat protein for RNA localization in yeast: a response to ‘MS2 coat proteins bound to yeast mRNAs block 5′ to 3′ degradation and trap mRNA decay products: implications for the localization of mRNAs by MS2-MCP system’. RNA 22, 660–666 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Heinrich, S., Sidler, C. L., Azzalin, C. M. & Weis, K. Stem-loop RNA labeling can affect nuclear and cytoplasmic mRNA processing. RNA 23, 134–141 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Vera, M., Tutucci, E. & Singer, R. H. In Imaging Gene Expression: Methods and Protocols (ed. Shav-Tal, Y.) 3–20 (Springer, 2019).

  291. Tantale, K. et al. A single-molecule view of transcription reveals convoys of RNA polymerases and multi-scale bursting. Nat. Commun. 7, 12248 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Pichon, X., Robert, M.-C., Bertrand, E., Singer, R. H. & Tutucci, E. New generations of MS2 variants and MCP fusions to detect single mRNAs in living eukaryotic cells. Methods Mol. Biol. 2166, 121–144 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Braselmann, E., Rathbun, C., Richards, E. M. & Palmer, A. E. Illuminating RNA biology: tools for imaging RNA in live mammalian cells. Cell Chem. Biol. 27, 891–903 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Morisaki, T. et al. Real-time quantification of single RNA translation dynamics in living cells. Science 352, 1425–1429 (2016). Together with refs 93,202,295,296, first example of imaging-based single-molecule mRNA translation reporter.

    Article  CAS  PubMed  Google Scholar 

  295. Yan, X., Hoek, T. A., Vale, R. D. & Tanenbaum, M. E. Dynamics of translation of single mRNA molecules in vivo. Cell 165, 976–989 (2016). Together with refs 93,202,294,296, first example of imaging-based single-molecule mRNA translation reporter.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Boersma, S. et al. Multi-color single-molecule imaging uncovers extensive heterogeneity in mRNA decoding. Cell 178, 458–472.e19 (2019). Together with refs 93,202,294,295, first example of imaging-based single-molecule mRNA translation reporter.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. tom Dieck, S. et al. Direct visualization of newly synthesized target proteins in situ. Nat. Methods 12, 411–414 (2015).

    Article  CAS  PubMed  Google Scholar 

  298. Hobson, B. D., Kong, L., Hartwick, E. W., Gonzalez, R. L. & Sims, P. A. Elongation inhibitors do not prevent the release of puromycylated nascent polypeptide chains from ribosomes. eLife 9, e60048 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Enam, S. U. et al. Puromycin reactivity does not accurately localize translation at the subcellular level. eLife 9, e60303 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for the constructive comments and apologize to collaborators and colleagues whose work could not be cited due to space limitations. This work was supported by NIH grant AG05583 and NSERC grant RGPIN-2019-04767 to M.V., NIH grant NS083085 and NIH Grant GM57071 to R.H.S., and a Rose F. Kennedy IDDRC Pilot Grant to S.D.

Author information

Authors and Affiliations

Authors

Contributions

S.D., V.G., E.T. and M.V. researched data for the Review; S.D., R.H.S., E.T. and M.V. made a substantial contribution to discussion of content; all of the authors wrote the article and S.D., R.H.S. and E.T. reviewed and edited the manuscript before submission.

Corresponding authors

Correspondence to Robert H. Singer or Evelina Tutucci.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Molecular Cell Biology thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Signal recognition particle

(SRP). A cytoplasmic RNA–protein complex required for protein targeting to the eukaryotic endoplasmic reticulum or the plasma membrane of bacteria.

Single-molecule fluorescence in situ hybridization

(smFISH). Fluorescence microscopy-based technique that allows the visualization and quantification of single mRNAs in fixed prokaryotic or eukaryotic cells.

Patterning factors

Signalling molecules, the distribution pattern of which within an organism contributes to cell differentiation, the determination of anterior–posterior body axis and development.

SunTag system

Signal amplification system for the visualization of proteins in living or fixed cells. The protein of interest is tagged with a repeated peptide array recognized by a single-chained antibody fused to a fluorescent protein or by immunofluorescence.

P-lineage

The first cleavage of the fertilized C. elegans zygote produces an anterior and a posterior (P1) blastomere. Asymmetric division of P1, until P4 leads to the production of the germline tissue.

In situ transcriptomics

Imaging-based gene expression and spatial profiling of fixed single cells based on multiple RNA imaging approaches.

Aptamer

Short RNA oligonucleotide, the sequence and structure of which is specifically recognized by an RNA binding protein (for example, the MS2 loop).

Expansion-FISH

(ExFISH). RNA in-situ imaging approach for fixed cells that combines sample clearing and expansion with smFISH, multiplexed smFISH or hybridization chain reaction FISH.

Lamellipodia

Thin membrane protrusions filled with a dense actin meshwork. They are required for cell forward projection and chemotaxis.

Cell leading edge

Protrusion of the cell membrane front formed during the migration of epithelial, endothelial, neuronal and immune cells.

Proximity-dependent biotin identification (BioID) assay

Tool for the identification of protein–protein interactions based on the in vivo labelling with biotin of interactors located in close proximity to the candidate protein.

APEX-seq

Proximity labelling of RNA with biotin using the peroxidase enzyme APEX (or APEX2) followed by sequencing.

Germ granules

RNA-rich membraneless cytoplasmic granules found in the germline of organisms such as X. laevis, D. melanogaster and D. rerio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S., Vera, M., Gandin, V. et al. Intracellular mRNA transport and localized translation. Nat Rev Mol Cell Biol 22, 483–504 (2021). https://doi.org/10.1038/s41580-021-00356-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-021-00356-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing