Skip to main content
Log in

Mechanics of Microcutting and Stagnant-Zone Formation

  • Published:
Russian Engineering Research Aims and scope

Abstract

The formation of chip and the machined surface is investigated, taking the cutter’s rounding radius into account. On that basis, it is possible to identify the point at which the material in the stagnant zone begins to separate. The proposed model describing the separation of cut material permits determination of the minimum possible chip thickness in cutting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Wan, M., Wen, D., Ma, Y.C., and Zhang, W.H., On material separation and cutting force prediction in micro milling through involving the effect of dead metal zone, Int. J. Mach. Tools Manuf., 2019, vol. 146, pp. 1–14.

    Article  Google Scholar 

  2. Altintas, Y., Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design, Cambridge: Cambridge Univ. Press, 2012, 2nd ed.

    Google Scholar 

  3. Yuan, H., Wan, M., and Yang, Y., Design of a tunable mass damper for mitigating vibrations in milling of cylindrical parts, Chin. J. Aeronaut., 2019, vol. 32, pp. 748–758.

    Article  Google Scholar 

  4. Bissacco, G., Hansen, H.N., and Slunsky, J., Modeling the cutting edge radius size effect for force prediction in micro milling, CIRP Ann., 2008, vol. 57, no. 1, pp. 113–116.

    Article  Google Scholar 

  5. Jin, X. and Altintas, Y., Prediction of micro-milling forces with finite element method, J. Mater. Process. Technol., 2012, vol. 212, no. 3, pp. 542–552.

    Article  Google Scholar 

  6. Jin, X. and Altintas, Y., Slip-line field model of micro-cutting process with round tool edge effect, J. Mater. Process. Technol., 2011, vol. 211, no. 3, pp. 339–355.

    Article  Google Scholar 

  7. Yun, H.T., Heo, S., Min, K.L., Min, B.K., and Sang, J.L., Ploughing detection in micromilling processes using the cutting force signal, Int. J. Mach. Tools Manuf., 2011, vol. 51, no. 5, pp. 377–382.

    Article  Google Scholar 

  8. Guo, Y.B. and Chou, Y.K., The determination of ploughing force and its influence on material properties in metal cutting, J. Mater. Process. Technol., 2004, vol. 48, no. 3, pp. 368–375.

    Article  Google Scholar 

  9. Wang, J.J.J. and Zheng, C.M., Identification of shearing and ploughing cutting constants from average forces in ball-end milling, Int. J. Mach. Tools Manuf., 2002, vol. 42, no. 6, pp. 695–705.

    Article  Google Scholar 

  10. Waldorf, D.J., DeVor, R.E., and Kapoor, S.G., A slip-line field for ploughing during orthogonal cutting, J. Manuf. Sci. Eng., 1998, vol. 120, no. 4, pp. 693–699.

    Google Scholar 

  11. Yuan, Z., Zhou, M., and Dong, S., Effect of diamond tool sharpness on minimum cutting thickness and cutting surface integrity in ultraprecision machining, J. Mater. Process. Technol., 1996, vol. 62, no. 4, pp. 327–330.

    Article  Google Scholar 

  12. Lai, X., Li, H., Li, C., Lin, Z., and Ni, J., Modeling and analysis of micro scale milling considering size effect, micro cutter edge radius and minimum chip thickness, Int. J. Mach. Tools Manuf., 2008, vol. 48, no. 1, pp. 1–14.

    Article  Google Scholar 

  13. Woon, K., Rahman, M., Neo, K., and Liu, K., The effect of tool edge radius on the contact phenomenon of tool-based micromachining, Int. J. Mach. Tools Manuf., 2008, vol. 48, nos. 12–13, pp. 1395–1407.

    Article  Google Scholar 

  14. Son, S.M., Han, S.L., and Ahn, J.H., Effects of the friction coefficient on the minimum cutting thickness in micro cutting, Int. J. Mach. Tools Manuf., 2005, vol. 45, no. 4, pp. 529–535.

    Article  Google Scholar 

  15. Malekian, M., Mostofa, M.G., Park, S.S., and Jun, M.B.G., Modeling of minimum uncut chip thickness in micro machining of aluminum, J. Mater. Process. Technol., 2012, vol. 212, no. 3, pp. 553–559.

    Article  Google Scholar 

  16. Abdelmoneim, M.E. and Scrutton, R., Tool edge roundness and stable build-up formation in finish machining, J. Eng. Ind., 1974, vol. 96, no. 4, pp. 1258–1267.

    Article  Google Scholar 

  17. Ozturk, S. and Altan, E., A slip-line approach to the machining with rounded-edge tool, Int. J. Adv. Manuf. Technol., 2012, vol. 63, nos. 5–8, pp. 513–522.

    Article  Google Scholar 

  18. Basuray, P., Misra, B., and Lal, G., Transition from ploughing to cutting during machining with blunt tools, Wear, 1977, vol. 43, no. 3, pp. 341–349.

    Article  Google Scholar 

  19. Wan, L. and Wang, D., Numerical analysis of the formation of the dead metal zone with different tools in orthogonal cutting, Simul. Model. Pract. Theory, 2015, vol. 56, pp. 1–15.

    Article  Google Scholar 

  20. Long, Y. and Huang, Y., Force modeling under dead metal zone effect in orthogonal cutting with chamfered tools, Trans. North Am. Manuf. Res. Inst. SME, 2005, vol. 33, pp. 573–580.

    Google Scholar 

  21. Wallen, P., Jacobson, S., and Hogmark, S., Intermittent metal cutting at small cutting depths-1. Dead zone phenomena and surface finish, Int. J. Mach. Tools Manuf., 1988, vol. 28, no. 4, pp. 515–528.

    Article  Google Scholar 

  22. Rechenko, D.S., The study of the process of difficult-to-machine materials cutting at the micro-level, Obrab. Met., 2019, vol. 21, no. 2, pp. 18–25.

    Google Scholar 

  23. Pereverzev, P.P. and Pimenov, D.Yu., Grinding force model allowing for dulling of abrasive wheel cutting grains in plunge cylindrical grinding, J. Frict. Wear, 2016, vol. 37, pp. 60–65.

    Article  Google Scholar 

Download references

Funding

Financial support was provided by the Russian President’s Council on Grants for Young Scientists and Leading Scientific Institutions (grant MD-345.2020.8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Rechenko.

Additional information

Translated by B. Gilbert

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rechenko, D.S., Balova, D.G. Mechanics of Microcutting and Stagnant-Zone Formation. Russ. Engin. Res. 41, 236–239 (2021). https://doi.org/10.3103/S1068798X2103014X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068798X2103014X

Keywords:

Navigation