Skip to main content

Advertisement

Log in

Diversity of fungal DNA in lake sediments on Vega Island, north-east Antarctic Peninsula assessed using DNA metabarcoding

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

We assessed the diversity of fungal DNA present in sediments of three lakes on Vega Island, north-east Antarctic Peninsula using metabarcoding through high-throughput sequencing (HTS). A total of 640,902 fungal DNA reads were detected, which were assigned to 224 taxa of the phyla Ascomycota, Rozellomycota, Basidiomycota, Chytridiomycota and Mortierellomycota, in rank order of abundance. The most abundant genera were Pseudogymnoascus, Penicillium and Mortierella. However, a majority (423,508, 66%) of the reads, representing by 43 ASVs, could only be assigned at higher taxonomic levels and may represent taxa not currently included in the sequence databases used or be new or previously unreported taxa present in Antarctic lakes. The three lakes were characterized by high sequence diversity, richness, and moderate dominance indices. The ASVs were dominated by psychrotolerant and cosmopolitan cold-adapted Ascomycota, Basidiomycota and Mortierellomycota commonly reported in Antarctic environments. However, other taxa detected included unidentified members of Rozellomycota and Chytridiomycota species not previously reported in Antarctic lakes. The assigned diversity was composed mainly of taxa recognized as decomposers and pathogens of plants and invertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abarenkov K et al (2020) UNITE QIIME release for eukaryotes. Version 04.02.2020. UNITE Community. https://doi.org/10.15156/BIO/786386

  • Arenz BE, Blanchette RA (2011) Distribution and abundance of soil fungi in Antarctica at sites on the Peninsula, Ross Sea Region and McMurdo Dry Valleys. Soil Biol Biochem 43:308–315

    CAS  Google Scholar 

  • Bardou P et al (2014) An interactive Venn diagram viewer. BMC Bioinform 15:293

    Google Scholar 

  • Bokulich NA et al (2018) Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6:90

    PubMed  PubMed Central  Google Scholar 

  • Bolyen E et al (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37:852–857

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bridge PD, Newsham KK (2009) Soil fungal community composition at Mars Oasis, a southern maritime Antarctic site, assessed by PCR amplification and cloning. Fungal Ecol 2:66–74

    Google Scholar 

  • Brunati M et al (2009) Diversity and pharmaceutical screening of fungi from benthic mats of Antarctic lakes. Mar Genomics 2:43–50

    PubMed  Google Scholar 

  • Callahan BJ et al (2016) Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carvalho CR et al (2020) Fungi associated with the briosphere of the bipolar mosses Polytrichastrum alpinum and Polytrichum juniperinum in Antarctica. Polar Biol 43:545–553

    Google Scholar 

  • Chaparro M et al (2017) Sedimentary analysis and magnetic properties of Lake Anónima, Vega Island. Antarct Sci 29:429–444

    Google Scholar 

  • Chen S et al (2010) Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS ONE 5:e8613

    PubMed  PubMed Central  Google Scholar 

  • Connell L et al (2018) Biodiversity and abundance of cultured microfungi from the permanently ice-covered Lake Fryxell, Antarctica. Life 8:1–10

    CAS  Google Scholar 

  • D’Ellia T, Veerapaneni R, Theraisnathan V, Rogers SO (2009) Isolation of fungi from Lake Vostok accretion ice. Mycologia 101:751–763

    Google Scholar 

  • da Silva TH et al (2020) Diversity, distribution, and ecology of viable fungi in permafrost and active layer of Maritime Antarctica. Extremophiles 24:565–576

    PubMed  Google Scholar 

  • de Menezes GCA et al (2019) Fungi in snow and glacial ice of Antarctica. In: Rosa LH (ed) Fungi of Antarctica: diversity, ecology and biotechnological applications. Springer Nature, pp 127–146

    Google Scholar 

  • de Menezes GCA et al (2020) Fungi in glacial ice of Antarctica: diversity, distribution and bioprospecting of bioactive compounds. Extremophiles 24:367–376

    PubMed  Google Scholar 

  • de Menezes GCA et al (2021) Fungal diversity present on rocks from a polar desert in continental Antarctica assessed using DNA metabarcoding. Extremophiles. https://doi.org/10.1007/s00792-021-01221-4

    Article  PubMed  Google Scholar 

  • de Souza LD et al (2021) Assessment of fungal diversity present in lakes of Maritime Antarctica using DNA metabarcoding: a temporal microcosm experiment. Extremophiles 25:77–84

    PubMed  Google Scholar 

  • Deiner K et al (2017) Environmental DNA metabarcoding: transforming how we survey animal and plant communities. Mol Ecol 26:5872–5895

    PubMed  Google Scholar 

  • Ellis-Evans JC (1985) Fungi from maritime Antarctic freshwater environments. Br Antart Surv Bull 68:37–45

    Google Scholar 

  • Ellis-Evans JC (1996) Microbial diversity and function in Antarctic freshwater ecosystems. Biodivers Conserv 5:1395–1431

    Google Scholar 

  • Franzmann PD, Dobson SJ (1993) The phylogeny of bacteria from a modern Antarctic refuge. Antarct Sci 5:267–270

    Google Scholar 

  • Giner CR et al (2016) Environmental sequencing provides reasonable estimates of the relative abundance of specific picoeukaryotes. Appl Environ Microbiol 82:4757–4766

    CAS  PubMed  PubMed Central  Google Scholar 

  • Godinho VM et al (2013) Diversity and bioprospecting of fungal communities associated with endemic and cold-adapted macroalgae in Antarctica. ISME J 7:1434–1451

    CAS  PubMed  PubMed Central  Google Scholar 

  • Godinho VM et al (2015) Diversity and bioprospection of fungal community present in oligotrophic soil of continental Antarctica. Extremophiles 19:585–596

    PubMed  Google Scholar 

  • Gomes EC et al (2018) Cultivable fungi present in Antarctic soils: taxonomy, phylogeny, diversity, and bioprospecting of antiparasitic and herbicidal metabolites. Extremophiles 22:381–393

    CAS  PubMed  Google Scholar 

  • Gonçalves VN et al (2012) Diversity and distribution of fungal communities in lakes of Antarctica. FEMS Microbiol Ecol 82:459–471

    PubMed  Google Scholar 

  • Gonçalves VN et al (2015) Antibacterial, antifungal and antiprotozoal activities of fungal communities present in different substrates from Antarctica. Polar Biol 38:1143–1152

    Google Scholar 

  • Hammer Ø et al (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:9

    Google Scholar 

  • Hering D et al (2018) Implementation options for DNA-based identification into ecological status assessment under the European Water Framework Directive. Water Res 138:192–205

    CAS  PubMed  Google Scholar 

  • Joshi NA, Fass JN (2011) Sickle: a sliding-window, adaptive, quality-based trimming tool for FastQ files (Version 1.33) [Software]. https://github.com/najoshi/sickle. Accessed 19 Oct 2020

  • Kagami M, Miki T, Takimoto G (2014) Mycoloop: chytrids in aquatic food webs. Front Microbiol 5:166

    PubMed  PubMed Central  Google Scholar 

  • Kirk PM et al (2011) Dictionary of the fungi, 10th edn. CAB International, Wallingford, p 784

    Google Scholar 

  • Krishnan A et al (2011) Extracellular hydrolase enzyme production by soil fungi from King George Island, Antarctica. Polar Biol 34:1535–1542

    Google Scholar 

  • Laybourn-Parry J, Pearce DA (2007) The biodiversity and ecology of Antarctic lakes: models for evolution. Philos Trans R Soc Lond B Biol Sci 362:2273–2289

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lecomte KL et al (2016) Hydrological systems from the Antarctic Peninsula under climate change: James Ross archipelago as study case. Environ Earth Sci 75:4–20

    Google Scholar 

  • Letcher PM, Powell MJ (2018) A taxonomic summary and revision of Rozella (Cryptomycota). IMA Fungus 9:383–399

    PubMed  PubMed Central  Google Scholar 

  • Loque CP et al (2010) Fungal community associated with marine macroalgae from Antarctica. Polar Biol 33:641–648

    Google Scholar 

  • Lorch JM et al (2013) A culture-based survey of fungi in soil from bat hibernacula in the eastern United States and its implications for detection of Geomyces destructans, the causal agent of bat white-nose syndrome. Mycologia 105:237–252

    CAS  PubMed  Google Scholar 

  • McRae CF, Hocking AD, Seppelt RD (1999) Penicillium species from terrestrial habitats in the Windmill Islands, East Antarctica, including a new species, Penicillium antarcticum. Polar Biol 21:97–111

    Google Scholar 

  • Medinger R et al (2010) Diversity in a hidden world: potential and limitation of next-generation sequencing for surveys of molecular diversity of eukaryotic microorganisms. Mol Ecol 19:32–40

    PubMed  PubMed Central  Google Scholar 

  • Mercantini R, Marsella R, Cervellati MC (1989) Keratinophilic fungi isolated from Antarctic soil. Mycopathologia 106:47–52

    CAS  PubMed  Google Scholar 

  • Minnis AM, Lindner DL (2013) Phylogenetic evaluation of Geomyces and allies reveals no close relatives of Pseudogymnoascus destructans, comb. nov., in bat hibernacula of eastern North America. Fungal Biol 117:638–649

    PubMed  Google Scholar 

  • Moreno L et al (2012) Hydrogeochemical characteristics at Cape Lamb, Vega Island, Antarctic Peninsula. Antarct Sci 24:591–607

    Google Scholar 

  • Nguyen NH et al (2016) FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol 20:241–248

    Google Scholar 

  • Ogaki MB et al (2019) Diversity and ecology of fungal assemblages present in lakes of antarctica. In: Rosa LH (ed) Fungi of Antarctica: diversity, ecology and biotechnological applications. Springer Nature, pp 69–97

    Google Scholar 

  • Ogaki MB et al (2020a) Diversity, ecology, and bioprospecting of culturable fungi in lakes impacted by anthropogenic activities in Maritime Antarctica. Extremophiles 24:637–655

    CAS  PubMed  Google Scholar 

  • Ogaki MB et al (2020b) Diversity and bioprospecting of cultivable fungal assemblages in sediments of lakes in the Antarctic Peninsula. Fungal Biol 124:601–611

    CAS  PubMed  Google Scholar 

  • Oksanen J et al (2012) Community ecology package. R package version 2.0-5. http://cran.r-project.org/web/packages/vegan/index.html. Accessed 19 Oct 2020

  • Píšková A et al (2019) Late-Holocene palaeoenvironmental changes at Lake Esmeralda (Vega Island, Antarctic Peninsula) based on a multi-proxy analysis of laminated lake sediment. Holocene. https://doi.org/10.1177/0959683619838033

    Article  Google Scholar 

  • Quesada A, Camacho A, Rochera C, Velá́zquez D (2009) Byers Peninsula: a reference site for coastal, terrestrial land limnetic ecosystem studies in maritime Antarctica. Polar Sci 3:181–187

    Google Scholar 

  • Rice AV, Currah RS (2006) Two new species of Pseudogymnoascus with Geomyces anamorphs and their phylogenetic relationship with Gymnostellatospora. Mycologia 98:307–318

    PubMed  Google Scholar 

  • Richardson RT et al (2015) Application of ITS2 metabarcoding to determine the provenance of pollen collected by honey bees in an agroecosystem. Appl Plant Scie 3:1400066

    Google Scholar 

  • Rojas-Jimenez K et al (2017) Early diverging lineages within Cryptomycota and Chytridiomycota dominate the fungal communities in ice-covered lakes of the McMurdo Dry Valleys, Antarctica. Sci Rep 7:15348

    PubMed  PubMed Central  Google Scholar 

  • Rosa LH et al (2010) Endophytic fungi community associated with the dicotyledonous plant Colobanthus quitensis (Kunth) Bartl. (Caryophyllaceae) in Antarctica. FEMS Microbiol Ecol 73:178–189

    CAS  PubMed  Google Scholar 

  • Rosa LH et al (2019) Fungi in Antarctica: diversity, ecology, effects of climate change, and bioprospection for bioactive compounds. In: Rosa LH (ed) Fungi of Antarctica: diversity, ecology and biotechnological applications. Springer, pp 1–18

    Google Scholar 

  • Rosa LH et al (2020a) DNA metabarcoding to assess the diversity of airborne fungi present in air over Keller Peninsula, King George Island, Antarctica. Microb Ecol. https://doi.org/10.1007/s00248-020-01627-1

    Article  PubMed  Google Scholar 

  • Rosa LH et al (2020b) DNA metabarcoding high-throughput sequencing uncovers cryptic fungal diversity in soils of protected and non-protected areas on Deception Island, Antarctica. Sci Rep. https://doi.org/10.1038/s41598-020-78934-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosa LH et al (2020c) Opportunistic fungal assemblages present on fairy rings spread on different moss species in the Antarctic Peninsula. Polar Biol 43:587–596

    Google Scholar 

  • Rosa LH et al (2020d) DNA metabarcoding high-throughput sequencing of fungal diversity in air and snow of Livingston Island, South Shetland Islands, Antarctica. Sci Rep. https://doi.org/10.1038/s41598-020-78630-6

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruisi S et al (2007) Fungi in Antarctica. Rev Environ Sci Biotechnol 6:127–141

    Google Scholar 

  • Santiago IF et al (2015) Lichenosphere: a protected natural microhabitat of the non-lichenised fungal communities living in extreme environments of Antarctica. Extremophiles 19:1087–1097

    PubMed  Google Scholar 

  • Schütte UM et al (2019) Effect of permafrost thaw on plant and soil fungal community in a boreal forest: does fungal community change mediate plant productivity response? J Ecol 107:1737–1752

    Google Scholar 

  • Taton A et al (2006) Biogeographical distribution and ecological ranges of benthic cyanobacteria in East Antarctic lakes. FEMS Microbiol Ecol 57:272–289

    CAS  PubMed  Google Scholar 

  • Tedersoo L et al (2018) High-level classification of the Fungi and a tool for evolutionary ecological analyses. Fungal Div 90:135–159

    Google Scholar 

  • Tosi S, Casado B, Gerdol R (2002) Fungi isolated from Antarctic mosses. Polar Biol 25:262–268

    Google Scholar 

  • Tsuji M (2016) Cold-stress responses in the Antarctic basidiomycetous yeast Mrakia blollopis. R Soc Open Sci 31:60106

    Google Scholar 

  • Vaz AB et al (2011) The diversity, extracellular enzymatic activities and photoprotective compounds of yeasts isolated in Antarctica. Braz J Microbiol 42:937–947

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vincent WF (2000) Evolutionary origins of Antarctic microbiota: invasion, selection and endemism. Antarct Sci 12:374–385

    Google Scholar 

  • Weber AA, Pawlowski J (2013) Can abundance of protists be inferred from sequence data: a case study of Foraminifera. PLoS ONE 8:e56739

    CAS  PubMed  PubMed Central  Google Scholar 

  • White TJ et al (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, pp 315–322

    Google Scholar 

  • Zucconi L et al (2012) Searching for eukaryotic life preserved in Antarctic permafrost. Polar Biol 35:749–757

    Google Scholar 

Download references

Acknowledgements

This study received financial support from CNPq, PROANTAR, FAPEMIG, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil (CAPES), INCT Criosfera 2. P. Convey is supported by NERC core funding to the British Antarctic Survey’s ‘Biodiversity, Evolution and Adaptation’ Team. We thank the Instituto Antártico Argentino for logistical and financial support for the field campaign in Vega Island, the Lagos team field group, and Fernando Calabozo for the photograph used in Fig. 1d.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz Henrique Rosa.

Additional information

Communicated by A. Oren.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogaki, M.B., Câmara, P.E.A.S., Pinto, O.H.B. et al. Diversity of fungal DNA in lake sediments on Vega Island, north-east Antarctic Peninsula assessed using DNA metabarcoding. Extremophiles 25, 257–265 (2021). https://doi.org/10.1007/s00792-021-01226-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-021-01226-z

Keywords

Navigation