Skip to main content
Log in

Semi-Differential Operators and the Algebra of Operator Product Expansion of Quantum Fields

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We introduce a symmetric operad whose algebras are the operator product expansion (OPE) Algebras of quantum fields. There is a natural classical limit for the algebras over this operad and they are commutative associative algebras with derivations. The latter are the algebras of classical fields. In this paper we completely develop our approach to models of quantum fields, which come from vertex algebras in higher dimensions. However, our approach to OPE algebras can be extended to general quantum fields even over curved space–time. We introduce a notion of OPE operations based on the new notion of semi-differential operators. The latter are linear operators \(\varGamma :\mathcal {M}\rightarrow \mathcal {N}\) between two modules of a commutative associative algebra \(\mathcal {A}\), such that for every \(m \in \mathcal {M}\) the assignment \(a\mapsto \varGamma (a \cdot m)\) is a differential operator \(\mathcal {A}\rightarrow \mathcal {N}\) in the usual sense. The residue of a meromorphic function at its pole is an example of a semi-differential operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. To be more precise, we need to consider it in the so called forward tube domain (in the sense of boundary value of analytic functions).

  2. In this paper “operad” will always stand for “symmetric operad” unless otherwise stated.

  3. In other words, these are compositions of the multiplication operation at the same point and differential operators. The differential–product operations can be called also poly–differential operations, as the corresponding differential operators contain an evaluation at the total diagonal (presenting the multiplication operation) and for this reason are called sometimes poly–differential operators.

  4. Namely, \(\mathcal {A}\) is the commutative associative algebra of smooth functions in \((\mathrm z_1,\) \(\dots ,\) \(\mathrm z_k,\) \(\mathrm x,\) \(\mathrm y,\) \(\mathrm z_{k+1},\) \(\dots ,\) \(\mathrm z_{n+1})\) and the modules \(\mathcal {M}\) and \(\mathcal {N}\) are the spaces of distributions where the left and the right hand sides of assignment (1.4) belong to, respectively.

  5. We denoted there \(\gamma \) by the letter Q, cf. [N09, Theorem 2.9].

  6. The renormalization prescriptions are described by the so called renormalization maps of [N09, NST14]).

  7. We shall not assume everywhere in this paper that \(\mathcal {A}\) has a unit but in all our applications there will be a unit in \(\mathcal {A}\) (i.e., \(\mathcal {A}\) will be unital).

  8. We shall write almost everywhere a dot to indicate our module actions.

  9. In partucular, \(\vartheta (r) \ne 0\).

  10. i.e., the action on \(\mathcal {N}\) is trivial in the sense of Definition 3.1 (c).

  11. i.e., \({\lambda }_{\{t^n\}}\) will be a linear combination of \(\left. \frac{\partial ^{\ell }}{(\partial t)^{\ell }}\right| _{t \, = \, 0}\) for \(\ell =0,1,\dots ,k\).

  12. Equation (7.5) guarantees that \(\gamma _{j_1,\dots ,j_k}\left( \varPhi ;\varPhi '_1,\dots ,\varPhi '_k\right) \), which by construction is a \((\mu _k \circ (\mu _{j_1} \otimes \cdots \otimes \mu _{j_k}))\)–differential operator, is also a \(\mu _n\)–differential operator.

  13. These operators are also called poly-differential operators.

  14. Here, \(q_{j,k}\) \(=\) \(q_{j,k;n}\) depends on n under the embedding in (7.18). However, in a slight abuse of notation, we shall omit n. In fact, this is exactly the situation if we think of \(\mathcal {C}^{\otimes n}\) as an increasing system of algebras (since they have increasing sets of generators \(\{x^{\mu }_j\}_{\mu =1,\dots ,D; j=1,\dots ,n}\) according to (7.3)).

  15. Similarly to \(\mu _n\) in Eq. (7.4), \(\mu _{j_1} \otimes \cdots \otimes \mu _{j_k}\) acts as the evaluation at the partial diagonal \(\mathrm x_1\) \(=\) \(\cdots \) \(=\) \(\mathrm x_{j_1}\), \(\mathrm x_{j_1+1}\) \(=\) \(\cdots \) \(=\) \(\mathrm x_{j_1+j_2}\), ....

  16. “loc. fin.” stands for “locally finite”, i.e., the infinite sum \(\sum _{\mathrm r\,\geqslant \, 0} \mathrm {T}^{\mathrm r} \otimes \varGamma _{\mathrm r}\) becomes finite when is applyed to some G \(\in \) \(\mathcal {O}_{n}^{\text { t.i.}}\).

  17. As in Example 4.1 we write V on the right hand side of the tensor product as it is the vector space that generates a free module over a commutative associative algebra acting on the left.

  18. Recall, \({\bigl (\cdots \bigr )}^{\widehat{\,}}\) stands for the formal continuation according to Theorem 4.1.

  19. The extension is because of the additional denominator \(1/Q_{j_1|\cdots |j_k}\bigl (({\widetilde{\mathrm x}}_{(i',i'')})_{i',i''}\bigr )\).

References

  1. Atiyah, M.F., MacDonald, I.G.: Introduction to commutative Algebra. Addison-Wesley Publishing Company, Reading (1969)

    MATH  Google Scholar 

  2. Bakalov, B., De Sole, A., Heluani, R., Kac, V.G.: An operadic approach to vertex algebra and Poisson vertex algebra cohomology, arXiv:1806.08754

  3. Bakalov, B., Nikolov, N.M.: Jacobi Identity for Vertex Algebras in Higher Dimensions. J. Math. Phys. 47, 5 (2006)

    Article  MathSciNet  Google Scholar 

  4. Bakalov, B., Nikolov, N.M.: Constructing models of vertex algebras in higher dimensions. In: Dobrev, V.K., et al. (eds.) Lie Theory and Its Applications in Physics VII. Heron Press, Sofia (2008)

    MATH  Google Scholar 

  5. Beilinson, A., Drinfeld, V.: Chiral algebras, American Mathematical Society Colloquium Publications 51. American Mathematical Society, Providence (2004)

    MATH  Google Scholar 

  6. Borcherds, R.E.: Vertex algebras, Kac-Moody algebras, and the Monster. Proc. Natl. Acad. Sci. U.S.A. 83, 3068–3071 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  7. Borcherds, R.E.: Vertex algebras. In: Kashiwara, M. (ed.): Topological Field Theory, Primitive Forms and Related Topics, Programming Mathematics, vol. 160, pp. 35–77. Birkhäuser, Boston (1998)

  8. Frenkel, I.B., Lepowsky, J., and Meurman, A.: Vertex Operator Algebras and the Monster, Pure and Applied Mathematics, vol. 134. Academic, Boston (1988)

  9. Heyneman, R.G., Sweedler, M.E.: Afine Hopf Algebras I. J. Algebra 13, 192–241 (1969)

    Article  MathSciNet  Google Scholar 

  10. Huang, Y.-Z., Lepowsky, J.: Vertex operator algebras and operads, arXiv:hep-th/9301009

  11. Kac, V.: Vertex algebras for beginners, University Lecture Series 10, 2nd edn. AMS, Providence (1998)

    Google Scholar 

  12. Loday, J.-L.: On the operad of associative algebras with derivation. Georgian Mathematical Journal. 17, (2010)

  13. Loday, J.-L., Nikolov, N.M.: Operadic construction of the renormalization group. Springer Proc. Math. Stat. 36, 191–211 (2013)

    MathSciNet  MATH  Google Scholar 

  14. Loday, J.-L., Vallette, B.: Algebraic Operads. Springer, Berlin (2012)

    Book  Google Scholar 

  15. Matsumura, H.: Commutative Algebra. The Benjamin/Cummings Publishing Company Inc, London (1980)

    MATH  Google Scholar 

  16. Nikolov, N.M.: Vertex algebras in higher dimensions and globally conformal invariant quantum field theory. Commun. Math. Phys. 253, 283–322 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  17. Nikolov, N.M.: Anomalies in quantum field theory and cohomologies in configuration spaces, arXiv:0903.0187 [math-ph]; Talk on anomaly in quantum field theory and cohomologies of configuration spaces, arXiv:0907.3735 [hep-th]

  18. Nikolov, N.M.: Cohomologies of configuration spaces and higher dimensional polylogarithms in renormalization group problems. AIP Conf. Proc. 1243, 165–178 (2010)

    Article  ADS  Google Scholar 

  19. Nikolov, N.M.: Operadic bridge between renormalization theory and vertex algebras. Springer Proc. Math. Stat. 111, 457–463 (2014)

    MathSciNet  MATH  Google Scholar 

  20. Nikolov, N.M.: Vertex algebras in higher dimensions are homotopy equivalent to vertex algebras in two dimensions. Springer Proc. Math. Stat. 191, 523–530 (2016)

    MathSciNet  MATH  Google Scholar 

  21. Nikolov, N.M.: The master algebra of quantum field theory, a talk given at X. International Symposium “Quantum Theory and Symmetries”, 19 - 25 June 2017, Varna, Bulgaria (unpublished)

  22. Nikolov, M.N., Stora, R., Todorov, I.: Renormalization of massless Feynman amplitudes in configuration space. Rev. Math. Phys. 26, 1430002 (2014)

    Article  MathSciNet  Google Scholar 

  23. Nikolov, N.M., Todorov, I.T.: Rationality of conformally invariant local correlation functions on compactified Minkowski space. Commun. Math. Phys. 218, 417–436 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  24. Smith, S.P.: Differential Operators on Commutative Algebras, Ring Theory Conf., (Antwerp, 1985), pp. 165-177, Lecture Notes in Math., 1197, Springer, Berlin, (1986)

  25. Samuel, O., Zariski, P.: Commutative Algebra, vol. 2. D. Van Nostrand Company Inc, Princeton (1960)

    MATH  Google Scholar 

  26. Wilson, K.G.: Non-Lagrangian Models of Current Algebra. Phys. Rev. 179, 1499–1512 (1969)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work began as a joint project with Jean–Louis Loday. His demise ended the fruitful cooperation that had begun. The author owes Jean–Louis Loday the idea of using operad theory in this study. This played a crucial role in all subsequent development of ideas. The author is grateful to Maxim Kontsevich for the useful discussions on various topics related to this work during his visits at Institut des Hautes Études Scientifiques (IHÉS, Bures-sur-Yvette, France). The author thanks the referees for their thoughtful comments. The author is grateful also to Bojko Bakalov and Milen Yakimov for many useful discussions on this work. The author thanks Lilia Angelova, Ludmil Hadjiivanov, Petko Nikolov, Todor Todorov and Svetoslav Zahariev for their reading of the manuscript and for suggesting several improvements and corrections. This work was supported in part by the Bulgarian National Science Fund under research Grant DN-18/3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay M. Nikolov.

Additional information

Communicated by Y. Kawahigashi

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

To my parents.

Appendix A: Proof of Theorem 10.2

Appendix A: Proof of Theorem 10.2

We need to prove that the map \(\text { OPE}_{V}\) (10.24) is a morphism of (symmetric) operads. This includes the compatibility (preservation) of the operadic composition, preservation of units and permutation equivariance. The latter is manifest according to (10.19). The preservation of the operadic units is also obvious.

We continue with the compatibility of the operadic compositions. The proof is straightforward, but there are several hidden natural maps in our constructions, which makes the proof complicated. The fact that that the map \(\text { OPE}_{V}\) (10.24) preserves the operadic compositions means that

$$\begin{aligned}&\text { OPE}_{V} (\varGamma ') \Bigl ( \text { OPE}_{V} (\varGamma ''_1)\bigl ({a}_{(1,1)},\dots ,{a}_{(1,j_1)}\bigr ),\, \dots ,\, \text { OPE}_{V} (\varGamma ''_k)\bigl ({a}_{(k,1)},\dots ,{a}_{(k,j_k)}\bigr ) \Bigr ) \nonumber \\&\quad = \, \text { OPE}_{V} (\gamma _{j_1,\dots ,j_k}\left( \varGamma ';\varGamma ''_1,\dots ,\varGamma ''_k\right) ) \bigl ({a}_{(1,1)},\dots ,{a}_{(1,j_1)},\, \ldots ,\, {a}_{(k,1)},\dots ,{a}_{(k,j_k)}\bigr ) \,.\nonumber \\ \end{aligned}$$
(A.1)

In other words, if

$$\begin{aligned} b_{\ell } \,:= & {} \text { OPE}_{V} (\varGamma ''_{\ell })\bigl ({a}_{(\ell ,1)},\dots ,{a}_{(\ell ,j_{\ell })}\bigr ) \quad (\ell \, = \, 1,\dots ,k) \,, \nonumber \\ c \,:= & {} \text { OPE}_{V} (\varGamma ')\bigl (b_1,\dots ,b_k\bigr ) \,, \nonumber \\ \varGamma \,:= & {} \gamma _{j_1,\dots ,j_k}\left( \varGamma ';\varGamma ''_1,\dots ,\varGamma ''_k\right) \,, \quad \text {then:} \nonumber \\ c \,= & {} \text { OPE}_{V} (\varGamma )\bigl ({a}_{(1,1)},\dots ,{a}_{(1,j_1)},\, \ldots ,\, {a}_{(k,1)},\dots ,{a}_{(k,j_k)}\bigr ) \,. \end{aligned}$$
(A.2)

Now, combining the definition (10.25) of \(\text { OPE}_{V}\) and the construction of \(\varGamma _{V}\) (10.5) one hasFootnote 18

$$\begin{aligned}&b_{\ell } \, = \, {\bigl ((\varepsilon _{(\mathrm x_{\ell } = 0)} \circ {(\varGamma ''_{\ell })}_{\{{Q''_{\ell }}^{-1}\}}) \otimes \text {id}_{V}\bigr )}^{\widehat{\,}} \bigl ( \mathcal {F}_{{a}_{(\ell ,1)},\dots ,{a}_{(\ell ,j_{\ell })}} \bigr ) \,, \nonumber \\&\mathcal {F}_{{a}_{(\ell ,1)},\dots ,{a}_{(\ell ,j_{\ell })}} ({\mathrm x}_{(\ell ,1)},\dots ,{\mathrm x}_{(\ell ,j_{\ell })}) \, := \, Q''_{\ell } \cdot \mathcal {Y}_{{a}_{(\ell ,1)},\dots ,{a}_{(\ell ,j_{\ell })},\widehat{1}\,} ({\mathrm x}_{(\ell ,1)},\dots ,{\mathrm x}_{(\ell ,j_{\ell })}) \nonumber \\&\quad \quad \in \, V[[{\mathrm x}_{(\ell ,1)},\dots ,{\mathrm x}_{(\ell ,j_{\ell })}]] \,, \nonumber \\&Q''_{\ell } \, :=\, \bigl ( Q_{j_\ell } ({\mathrm x}_{(\ell ,1)},\dots ,{\mathrm x}_{(\ell ,j_{\ell })}) \bigr )^{N_{{a}_{(\ell ,1)},\dots ,{a}_{(\ell ,j_{\ell })}}} \,, \end{aligned}$$
(A.3)

for \(\ell = 1,\dots ,k\). Here:

  1. (i)

    roughly speaking, \(b_{\ell }\) is obtained by applying the differential operator \(\varepsilon _{(\mathrm x_{\ell }=0)} \circ {(\varGamma ''_{\ell })}_{\{{Q''_{\ell }}^{-1}\}}\) on the formal power series \(\mathcal {F}_{{a}_{(\ell ,1)},\dots ,{a}_{(\ell ,j_{\ell })}} ({\mathrm x}_{(\ell ,1)},\) \(\dots ,\) \({\mathrm x}_{(\ell ,j_{\ell })})\) without acting on the coefficients \(\in V\) of that series.

  2. (ii)

    \(\varepsilon _{(\mathrm x_{\ell }=0)}\)  :  \(F(\mathrm x_{\ell })\) \(\mapsto \) F(0) is the augmentation \(\varepsilon \) on \(\mathcal {C}\) with indicated set of generating formal variables \(\mathrm x_{\ell }\) on which it acts.

  3. (iii)

    In (i) we assumed that after applying the (continued) differential operator \({(\varGamma ''_{\ell })}_{\{{Q''_{\ell }}^{-1}\}}\) to \(\mathcal {F}_{{a}_{(\ell ,1)},\dots ,{a}_{(\ell ,j_{\ell })}} ({\mathrm x}_{(\ell ,1)},\) \(\dots ,\) \({\mathrm x}_{(\ell ,j_{\ell })})\) then the resulting variable is \(\mathrm x_{\ell }\), which afterwards is set to 0 by \(\varepsilon _{(\mathrm x_{\ell }=0)}\).

  4. (iv)

    \(N_{{a}_{(\ell ,1)},\dots ,{a}_{(\ell ,j_{\ell })}}\) are sufficiently large positive integer numbers, which according to the theory of vertex algebras will ensure that \(\mathcal {F}_{{a}_{(\ell ,1)},\dots ,{a}_{(\ell ,j_{\ell })}} ({\mathrm x}_{(\ell ,1)},\) \(\dots ,\) \({\mathrm x}_{(\ell ,j_{\ell })})\) \(\in \) \(V[[{\mathrm x}_{(\ell ,1)},\) \(\dots ,\) \({\mathrm x}_{(\ell ,j_{\ell })}]]\) (cf. Eq. (10.18)).

It follows that

$$\begin{aligned}&\mathcal {Y}_{b_1,\dots ,b_k,\widehat{1}\,} (\mathrm y_1,\dots ,\mathrm y_k) \, \nonumber \\&\quad =\Bigl ( \bigl ( (\varepsilon _{(\mathrm x_1 = 0)} \circ {(\varGamma ''_1)}_{\{{Q''_1}^{-1}\}}) \otimes \cdots \otimes (\varepsilon _{(\mathrm x_k = 0)} \circ {(\varGamma ''_k)}_{\{{Q''_k}^{-1}\}}) \bigr ) \nonumber \\&\quad { \otimes \, \text {id}_{V[[\mathrm y_1,\dots ,\mathrm y_k]] [1/Q'] } \Bigr )}^{\widehat{\,}} \Bigl ( \mathcal {Y}_{ \mathcal {F}_{{a}_{(1,1)},\dots }({\mathrm x}_{(1,1)},\dots ),\, \ldots ,\,\mathcal {F}_{{a}_{(k,1)},\dots ,{a}_{(k,j_k)}}({\mathrm x}_{(k,1)},\dots ,{\mathrm x}_{(k,j_k)}) ,\,\widehat{1}\, } \bigl (\mathrm y_1, \nonumber \\&\quad \quad \dots ,\mathrm y_k\bigr ) \Bigr ) \,, \qquad \end{aligned}$$
(A.4)

where similarly to (A.3),

$$\begin{aligned}&Q' \,:=\, \bigl ( Q_k (\mathrm y_1,\dots ,\mathrm y_k)\bigr )^{N_{b_1,\dots ,b_k}} \quad \text {is such that} \,, \nonumber \\&\mathcal {F}_{b_1,\dots ,b_k} (\mathrm y_1,\dots ,\mathrm y_k) \, := \, Q' \cdot \mathcal {Y}_{b_1,\dots ,b_k,\widehat{1}\,} (\mathrm y_1,\dots ,\mathrm y_k) \, \in \, V[[\mathrm y_1,\dots ,\mathrm y_k]] \,. \end{aligned}$$
(A.5)

In Eq. (A.4) we encounter the first subtlety related to hidden natural maps. Before arguing for Eq. (A.4), we will explain the meaning of the substitution process

$$\begin{aligned} \mathcal {Y}_{b_1,\dots ,b_k,\widehat{1}} \, \mapsto \, \mathcal {Y}_{ \mathcal {F}_{{a}_{(1,1)},\dots ,{a}_{(1,j_1)}},\, \ldots ,\, \mathcal {F}_{{a}_{(k,1)},\dots ,{a}_{(k,j_k)}} ,\,\widehat{1}\, } \, \end{aligned}$$

and in what space of series the result belongs to. To this end, note first that the assignment \(b_1 \otimes \cdots \otimes b_k\) \(\mapsto \) \(\mathcal {Y}_{b_1,\dots ,b_k,\widehat{1}\,} (\mathrm y_1,\) \(\dots \) \(\mathrm y_k)\) is a linear map \(V^{\otimes k}\) \(\rightarrow \) \(V [[\mathrm y_1,\) \(\dots ,\) \(\mathrm y_k]][1/Q_k(\mathrm y_1,\) \(\dots ,\) \(\mathrm y_k)]\) \(=\) \(V [[\mathrm y_1,\) \(\dots ,\) \(\mathrm y_k]][1/Q']\). Applying to this map the functorial assignment W \(\mapsto \) \(W [[({\mathrm x}_{(i',i'')})_{i',i''}]]\) we lift the map \(b_1\) \(\otimes \) \(\cdots \) \(\otimes \) \(b_k\) \(\mapsto \) \(\mathcal {F}_{b_1,\dots ,b_k}\) to a linear map

$$\begin{aligned} \bigl (V^{\otimes k}\bigr ) [[({\mathrm x}_{(i',i'')})_{i',i''}]] \, \rightarrow \, \bigl (V [[\mathrm y_1, \dots , \mathrm y_k]][1/Q'] \bigr ) [[({\mathrm x}_{(i',i'')})_{i',i''}]] \,. \end{aligned}$$

Composing further the latter map on the right by the maps

we obtain the linear map

In particular,

$$\begin{aligned} \mathcal {Y}_{\mathcal {F}_{{a}_{(1,1)},\dots ,{a}_{(1,j_1)}},\, \ldots ,\, \mathcal {F}_{{a}_{(k,1)},\dots ,{a}_{(k,j_k)}} ,\,\widehat{1}\,} \,\in \, \bigl (V [[\mathrm y_1, \dots , \mathrm y_k]][1/Q'] \bigr ) [[({\mathrm x}_{(i',i'')})_{i',i''}]] \,.\nonumber \\ \end{aligned}$$
(A.6)

Then the meaning of Eq. (A.4) is that the differential operators

\(\varepsilon _{(\mathrm x_{\ell } = 0)}\) \(\circ \) \({(\varGamma ''_{\ell })}_{\{{Q''_k}^{-1}\}}\) act now on variables \(({\mathrm x}_{(i',i'')})\) in the series (A.6) without touching the coefficient series \(\in \) \(V [[\mathrm y_1,\) \(\dots ,\) \(\mathrm y_k]][1/Q']\).

Having argued (A.4) we now use another important fact from the theory of vertex algebras called “the associativity theorem”. Here we state its general form without a proof, which is a straightforward generalization of [BN06, Theorem 5.1].

Theorem A.1

Let \(V\) be a vertex algebra and \(Q''_{\ell }\), \(\mathcal {F}_{{a}_{(\ell ,1)},\cdots ,{a}_{(\ell ,j_{\ell })}}\) be set according to Eq. (A.3) for \({a}_{(i',i'')} \in V\) \((\) \(i'\) \(=\) 1,  \(\dots ,\) k, \(i''\) \(=\) 1,  \(\dots ,\) \(j_{i'}\) \()\). Then, if we set for short \({\widetilde{\mathrm x}}_{(i',i'')}\) \(:=\) \({\mathrm x}_{(i',i'')}+\mathrm y_{i'}\) we have

$$\begin{aligned}&Q''_1 \cdots Q''_k \nonumber \\&\quad \times \, \mathcal {Y}_{{a}_{(1,1)},\dots ,{a}_{(1,j_1)},\ldots ,{a}_{(k,1)},\dots ,{a}_{(k,j_k)},\widehat{1}\,} \bigl ({\widetilde{\mathrm x}}_{(1,1)},\dots ,{\widetilde{\mathrm x}}_{(1,j_1)},\ldots , {\widetilde{\mathrm x}}_{(k,1)},\dots ,{\widetilde{\mathrm x}}_{(k,j_k)}\bigr ) \nonumber \\&\quad \quad \in \, V [[({\widetilde{\mathrm x}}_{(i',i'')})_{i',i''}]]\bigl [1/Q_{j_1|\cdots |j_k}\bigl (({\widetilde{\mathrm x}}_{(i',i'')})_{i',i''}\bigr )\bigr ] \,, \end{aligned}$$
(A.7)

where \(Q_{j_1|\cdots |j_k}\) is introduced in Eq. (7.20). Furthermore, we have

$$\begin{aligned}&\mathcal {Y}_{ \mathcal {F}_{{a}_{(1,1)},\dots ,{a}_{(1,j_1)}}({\mathrm x}_{(1,1)},\dots ,{\mathrm x}_{(1,j_1)}),\, \ldots ,\, \mathcal {F}_{{a}_{(k,1)},\dots ,{a}_{(k,j_k)}}({\mathrm x}_{(k,1)},\dots ,{\mathrm x}_{(k,j_k)}) \,,\,\widehat{1}\,} \bigl (\mathrm y_1,\dots ,\mathrm y_k\bigr ) \nonumber \\&\quad =\, \iota _{{\mathrm x}_{(1,1)},{\mathrm x}_{(1,2)}\dots ,{\mathrm x}_{(k,j_k)}} \, Q''_1 \cdots Q''_k \, \nonumber \\&\quad \quad \times \, \mathcal {Y}_{{a}_{(1,1)},\dots ,{a}_{(1,j_1)}, \ldots ,{a}_{(k,1)},\dots ,{a}_{(k,j_k)},\widehat{1}\,} \bigl ({\widetilde{\mathrm x}}_{(1,1)},\dots ,{\widetilde{\mathrm x}}_{(1,j_1)},\ldots , {\widetilde{\mathrm x}}_{(k,1)},\dots ,{\widetilde{\mathrm x}}_{(k,j_k)}\bigr ) \,,\nonumber \\ \end{aligned}$$
(A.8)

where \(\iota _{{\mathrm x}_{(1,1)},{\mathrm x}_{(1,2)}\dots ,{\mathrm x}_{(k,j_k)}}\) stands for the (formal) Taylor expansion in \({\mathrm x}_{(i',i'')}:\)

$$\begin{aligned}&\iota _{{\mathrm x}_{(1,1)},{\mathrm x}_{(1,2)}\dots ,{\mathrm x}_{(k,j_k)}} \,: V [[({\widetilde{\mathrm x}}_{(i',i'')})_{i',i''}]]\bigl [1/Q_{j_1|\cdots |j_k}\bigl (({\widetilde{\mathrm x}}_{(i',i'')})_{i',i''}\bigr )\bigr ] \nonumber \\&\quad \rightarrow \, \bigl (V [[\mathrm y_1, \dots , \mathrm y_k]][1/Q'] \bigr ) [[({\mathrm x}_{(i',i'')})_{i',i''}]] \,. \end{aligned}$$
(A.9)

Remark .1

Roughly, Eq. (A.8) can be written as

$$\begin{aligned}&\mathcal {Y}_{\mathcal {Y}_{{a}_{(1,1)},\dots ,{a}_{(1,j_1)},\,\widehat{1}\,}({\mathrm x}_{(1,1)},\dots ,{\mathrm x}_{(1,j_1)}),\, \ldots ,\, \mathcal {Y}_{{a}_{(k,1)},\dots ,{a}_{(k,j_k)},\,\widehat{1}\,}({\mathrm x}_{(k,1)},\dots ,{\mathrm x}_{(k,j_k)}) \,,\,\widehat{1}\,} \bigl (\mathrm y_1,\dots ,\mathrm y_k\bigr ) \nonumber \\&\quad \approx \, \mathcal {Y}_{{a}_{(1,1)},\dots ,{a}_{(1,j_1)}, \ldots ,{a}_{(k,1)},\dots ,{a}_{(k,j_k)},\widehat{1}\,} \bigl ({\widetilde{\mathrm x}}_{(1,1)},\dots ,{\widetilde{\mathrm x}}_{(1,j_1)},\ldots , {\widetilde{\mathrm x}}_{(k,1)},\dots ,{\widetilde{\mathrm x}}_{(k,j_k)}\bigr ) \,,\quad \end{aligned}$$

(\({\widetilde{\mathrm x}}_{(i',i'')}\) \(:=\) \({\mathrm x}_{(i',i'')}+\mathrm y_{i'}\)), where “\(\approx \)” stands for the identification after the expansion (A.9).

Continuing we the proof of Theorem 10.2, we apply Eq. (A.8) to the right hand side of Eq. (A.4). We note that any differential operator commutes with the Taylor expansion since any operator of multiplication by a formal variable or any partial derivative commute with the Taylor expansion. As a result, we can move the differential operators \(\varepsilon _{(\mathrm x_{\ell }=0)} \circ {(\varGamma ''_{\ell })}_{\{{Q''_{\ell }}^{-1}\}}\) in (A.4) inside the Taylor expansion on the right hand side of Eq. (A.8). We claim that then Eq. (A.4) takes the following form:

$$\begin{aligned}&\mathcal {Y}_{b_1,\dots ,b_k,\widehat{1}\,} (\mathrm y_1,\dots ,\mathrm y_k) \,=\, (\varepsilon _{(\mathrm x_1=0)} \otimes \cdots \otimes \varepsilon _{(\mathrm x_{\ell }=0)}) \nonumber \\&\quad \circ \, { \bigl ( {({(\varGamma ''_1)}_{\{{Q''_1}^{-1}\}} \otimes \cdots \otimes {(\varGamma ''_k)}_{\{{Q''_k}^{-1}\}})}^{ext} \otimes \text {id}_{V}\bigr )}^{\widehat{\,}} \Bigl ( Q''_1 \cdots Q''_k \, \nonumber \\&\quad \times \, \mathcal {Y}_{{a}_{(1,1)},\dots ,{a}_{(1,j_1)},\ldots ,{a}_{(k,1)},\dots ,{a}_{(k,j_k)}\,,\,\widehat{1}\,} \bigl ({\mathrm x}_{(1,1)}+\mathrm y_1, {\mathrm x}_{(1,2)}+\mathrm y_1,\ldots ,{\mathrm x}_{(k,j_k)}+\mathrm y_k\bigr ) \Bigr ) \,.\nonumber \\ \end{aligned}$$
(A.10)

Indeed:

  • when we move the differential operator \({(\varGamma ''_1)}_{\{{Q''_1}^{-1}\}}\) \(\otimes \) \(\cdots \) \(\otimes \) \({(\varGamma ''_k)}_{\{{Q''_k}^{-1}\}}\) \(=\) \((\varGamma ''_1\) \(\otimes \) \(\cdots \) \(\otimes \) \({\varGamma ''_1)}_{\{{(Q''_1 \cdots Q''_k)}^{-1}\}}\) before the Taylor expansion in all \({\mathrm x}_{(i',i'')}\) it now acts according to its extension \({(\cdots )}^{ext}\) due to Theorem 3.1.Footnote 19

  • The differential operators \({(\varGamma ''_{\ell })}_{\{{Q''_{\ell }}^{-1}\}}\) set all the variables \({\mathrm x}_{(\ell ,s)}\) equal to \(\mathrm x_{\ell }\), which then is set to zero by \(\varepsilon _{(\mathrm x_{\ell }=0)}\). Thus, the Taylor expansion disappears in the right hand side of Eq. (A.10).

We can further remove all the \(Q''_{\ell }\) from \({(\varGamma ''_{\ell })}_{\{{Q''_{\ell }}^{-1}\}}\) (following the construction of Theorem 5.6). Thus, we obtain

$$\begin{aligned}&\mathcal {Y}_{b_1,\dots ,b_k,\widehat{1}\,} (\mathrm y_1,\dots ,\mathrm y_k) \,=\, (\varepsilon _{(\mathrm x_1=0)} \otimes \cdots \otimes \varepsilon _{(\mathrm x_{\ell }=0)}) \nonumber \\&\quad \circ \, \bigl ( {(\varGamma ''_1 \otimes \cdots \otimes \varGamma ''_k)}^{ext} \bigr )_{V} \Bigl ( \mathcal {Y}_{{a}_{(1,1)},\dots ,{a}_{(1,j_1)},\ldots ,{a}_{(k,1)},\dots ,{a}_{(k,j_k)}\,,\,\widehat{1}\,} \bigl ({\mathrm x}_{(1,1)}+\mathrm y_1, \nonumber \\&\quad \quad \quad {\mathrm x}_{(1,2)}+\mathrm y_1,\ldots ,{\mathrm x}_{(k,j_k)}+\mathrm y_k\bigr ) \Bigr ) \,, \end{aligned}$$
(A.11)

where

$$\begin{aligned} \bigl ( {(\varGamma ''_1 \otimes \cdots \otimes \varGamma ''_k)}^{ext} \bigr )_{V} \,:=\, {\bigl ( {(\varGamma ''_1 \otimes \cdots \otimes \varGamma ''_k)}^{ext} \otimes \text {id}_{V} \bigr )}^{\widehat{\,}} \end{aligned}$$

is the same type of extension as those constructed in Theorem 10.1.

Now, in the right hand side of Eq. (A.11) we can omit all the \(\varepsilon _{(\mathrm x_{\ell }=0)}\) just by replacing \(\mathrm y_1,\) \(\dots ,\) \(\mathrm y_k\) by \(\mathrm x_1,\) \(\dots ,\) \(\mathrm x_k\), respectively. We obtain:

$$\begin{aligned}&\mathcal {Y}_{b_1,\dots ,b_k,\widehat{1}\,} (\mathrm x_1,\dots ,\mathrm x_k) \nonumber \\&\quad =\, \bigl ( {(\varGamma ''_1 \otimes \cdots \otimes \varGamma ''_k)}^{ext} \bigr )_{V} \Bigl ( \mathcal {Y}_{{a}_{(1,1)},\dots ,{a}_{(1,j_1)},\ldots ,{a}_{(k,1)},\dots ,{a}_{(k,j_k)}\,,\,\widehat{1}\,} \bigl (({\mathrm x}_{(i',i'')})_{i',i''}\bigr ) \Bigr ) \,.\nonumber \\ \end{aligned}$$
(A.12)

Finally,

$$\begin{aligned} c \,= & {} \bigl (\varepsilon _{(\mathrm x= 0)} \circ (\varGamma ')_{V}\bigr ) \Bigl (\mathcal {Y}_{b_1,\dots ,b_k,\widehat{1}\,} (\mathrm x_1,\dots ,\mathrm x_k)\Bigr ) \nonumber \\= & {} \Bigl (\varepsilon _{(\mathrm x= 0)} \circ \bigl ( \varGamma ' \circ {(\varGamma ''_1 \otimes \cdots \otimes \varGamma ''_k)}^{ext} \bigr )_{V} \Bigr ) \Bigl ( \mathcal {Y}_{{a}_{(1,1)},\dots ,{a}_{(1,j_1)},\ldots ,{a}_{(k,1)},\dots ,{a}_{(k,j_k)}\,,\,\widehat{1}\,} \Bigr ) \end{aligned}$$

and this is exactly (A.2).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikolov, N.M. Semi-Differential Operators and the Algebra of Operator Product Expansion of Quantum Fields. Commun. Math. Phys. 384, 201–244 (2021). https://doi.org/10.1007/s00220-021-04051-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-021-04051-9

Navigation