Skip to main content
Log in

Leibniz algebras with derivations

  • Published:
Journal of Homotopy and Related Structures Aims and scope Submit manuscript

Abstract

In this paper, we consider Leibniz algebras with derivations. A pair consisting of a Leibniz algebra and a distinguished derivation is called a LeibDer pair. We define a cohomology theory for LeibDer pair with coefficients in a representation. We study central extensions of a LeibDer pair. In the next, we generalize the formal deformation theory to LeibDer pairs in which we deform both the Leibniz bracket and the distinguished derivation. It is governed by the cohomology of LeibDer pair with coefficients in itself. Finally, we consider homotopy derivations on sh Leibniz algebras and 2-derivations on Leibniz 2-algebras. The category of 2-term sh Leibniz algebras with homotopy derivations is equivalent to the category of Leibniz 2-algebras with 2-derivations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ammar, M., Poncin, N.: Coalgebraic approach to the Loday infinity category, stem differential for \(2n\)-ary graded and homotopy algebras. Ann. Inst. Fourier (Grenoble) 60(1), 355–387 (2010)

    Article  MathSciNet  Google Scholar 

  2. Ayala, V., Kizil, E., de Azevedo Tribuzy, I.: On an algorithm for finding derivations of Lie algebras. Proyecciones 31, 81–90 (2012)

    Article  MathSciNet  Google Scholar 

  3. Ayala, V., Tirao, J.: Linear control systems on Lie groups and controllability, In: Differential geometry and control (Boulder, CO, 1997), 47-64, Proc. Sympos. Pure Math., 64, Amer. Math. Soc., Providence, RI (1999)

  4. Ayupov, A.Sh., Omirov, A.B.: On Leibniz algebras, Algebra and operator theory (Tashkent, 1997), 1–12. Kluwer Acad. Publ, Dordrecht (1998)

  5. Baez, J.C., Crans, A.S.: Higher-dimensional algebra VI: Lie \(2\)-algebras. Theory Appl. Categ. 12, 492–538 (2004)

    MathSciNet  MATH  Google Scholar 

  6. Balavoine, D.: Déformations des algébres de Leibniz. C. R. Acad. Sci. Paris Sér. I Math. 319(8), 783–788 (1994)

    MathSciNet  MATH  Google Scholar 

  7. Balavoine, D.: Deformation of algebras over a quadratic operad, Operads: Proceedings of Renaissance Conferences (Hartford, CT/ Luminy, 1995), 207–234, Contemp. Math., 202, Amer. Math. Soc., Providence, RI (1997)

  8. Balavoive, D.: Homology and cohomology with coefficients, of an algebra over a quadratic operad. J. Pure Appl. Algebra 132(3), 221–258 (1998)

    Article  MathSciNet  Google Scholar 

  9. Bloh, A.: A generalization of the concept of a Lie algebra. Dokl. Akad. Nauk SSSR 165(3), 471–473 (1965)

    MathSciNet  Google Scholar 

  10. Branes, D.W.: On Levi’s Theorem for Leibniz algebras. Bull. Aust. Math. Soc. 86(2), 184–185 (2012)

    Article  MathSciNet  Google Scholar 

  11. Casas, J.M., Loday, J.-L., Pirashvili, T.: Leibniz \(n\)-algebras. Forum Math. 14(2), 189–207 (2002)

    Article  MathSciNet  Google Scholar 

  12. Coll, V.E., Gerstenhaber, M., Giaquinto, A.: An explicit deformation formula with noncommuting derivations, Ring theory 1989 (Ramat Gan and Jerusalem, 1988/1989), 396–403, Israel Math. Conf. Proc., 1, Weizmann, Jerusalem (1989)

  13. Das, A., Mandal, A.: Extensions, deformations and categorifications of AssDer pairs, submitted. https://arxiv.org/abs/2002.11415

  14. Doubek, M., Lada, T.: Homotopy derivations. J. Homotopy Relat. Struct. 11(3), 599–630 (2016)

    Article  MathSciNet  Google Scholar 

  15. Gerstenhaber, M.: On the deformation of rings and algebras. Ann. Math. (2) 79, 59–103 (1964)

    Article  MathSciNet  Google Scholar 

  16. Janelidze, G., Kelly, G.M.: Galois theory and a general notion of central extension. J. Pure Appl. Algebra 97, 135–161 (1994)

    Article  MathSciNet  Google Scholar 

  17. Janelidze, G., Kelly, G.M.: Central extensions in universal algebra: A unification of three notions. Algebra Univers. 44(1–2), 123–128 (2000)

    Article  MathSciNet  Google Scholar 

  18. Janelidze, G., Kelly, G.M.: Central extensions in Mal’tsev varieties. Theory Appl. Categ. 7, 219–226 (2000)

    MathSciNet  MATH  Google Scholar 

  19. Ji, X.: Deformations of Courant algebroids and Dirac structures via blended structures. Diff. Geom. Appl. 59, 204–226 (2018)

    Article  MathSciNet  Google Scholar 

  20. Keller, F., Waldmann, S.: Deformation theory of Courant algebroids via the Rothstein algebra. J. Pure Appl. Algebra 219(8), 3391–3426 (2015)

    Article  MathSciNet  Google Scholar 

  21. Liu, Z., Weinstein, A., Xu, P.: Manin triples for Lie bialgebroids. J. Differ. Geom. 45(3), 547–574 (1997)

    Article  MathSciNet  Google Scholar 

  22. Loday, J.-L.: Une version non commutative des algèbres de Lie: les algèbres de Leibniz. Enseign. Math. (2) 39(3–4), 269–293 (1993)

    MathSciNet  MATH  Google Scholar 

  23. Loday, J.-L.: Cup-product for Leibniz cohomology and dual Leibniz algebras. Math. Scand. 77(2), 189–196 (1995)

    Article  MathSciNet  Google Scholar 

  24. Loday, J.-L.: Dialgebras, Dialgebras and related operads, 7-66, Lecture Notes in Math., 1763, Springer, Berlin (2001)

  25. Loday, J.-L.: On the operad of associative algebras with derivation. Georgian Math. J. 17(2), 347–372 (2010)

    Article  MathSciNet  Google Scholar 

  26. Loday, J.-L., Pirashvili, T.: Universal enveloping algebras of Leibniz algebras and (co)homology. Math. Ann. 296(1), 139–158 (1993)

    Article  MathSciNet  Google Scholar 

  27. Magid, A.R.: Lectures on differential Galois theory, University Lecture Series, 7. American Mathematical Society, Providence, RI (1994)

  28. Nijenhuis, A., Richardson, R.: Deformation of Lie algebra structures. J. Math. Mech. 17, 89–105 (1967)

    MathSciNet  MATH  Google Scholar 

  29. Sheng, Y., Liu, Z.: Leibniz \(2\)-algebras and twisted Courant algebroids. Comm. Algebra 41(5), 1929–1953 (2013)

    Article  MathSciNet  Google Scholar 

  30. Tang, R., Frégier, Y., Sheng, Y.: Cohomologies of a Lie algebra with a derivation and applications. J. Algebra 534, 65–99 (2019)

    Article  MathSciNet  Google Scholar 

  31. Voronov, T.: Higher derived brackets and homotopy algebras. J. Pure Appl. Algebra 202(1–3), 133–153 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to thank the referee for his/her valuable comments on the earlier version that have improved the paper. The author also thanks Indian Institute of Technology Kanpur for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Apurba Das.

Additional information

Communicated by Tom Lada.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, A. Leibniz algebras with derivations. J. Homotopy Relat. Struct. 16, 245–274 (2021). https://doi.org/10.1007/s40062-021-00280-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40062-021-00280-w

Keywords

Mathematics Subject Classification

Navigation