Skip to main content
Log in

Harmonic Analysis Invariants for Infinite Graphs Via Operators and Algorithms

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

We present recent advances in harmonic analysis on infinite graphs. Our approach combines combinatorial tools with new results from the theory of unbounded Hermitian operators in Hilbert space, geometry, boundary constructions, and spectral invariants. We focus on particular classes of infinite graphs, including such weighted graphs which arise in electrical network models, as well as new diagrammatic graph representations. We further stress some direct parallels between our present analysis on infinite graphs, on the one hand, and, on the other, specific areas of potential theory, probability, harmonic functions, and boundary theory. The limit constructions, finite to infinite, and local to global, can be used in various applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. The terms electrical network, weighted network, electrical resistance network are used as synonyms in many papers and books on this subject.

  2. One can consider complex-valued functions in this (and other) definition; obvious changes can be easily made.

  3. It follows from Proposition 3.6 that the definition of a dipole given in Definition 2.2 agrees with that mentioned in (3.5)

  4. More generally, L is semibounded if for some number c one has \(\langle L f, f\rangle _{H} \ge c \langle f, f\rangle _{H}\).

  5. We deal with \(\Delta _{\mathcal {H}_E}\) here; the operator \(\Delta _2\) is considered similarly.

References

  1. Alpay, D., Jorgensen, P., Volok, D.: Relative reproducing kernel Hilbert spaces. Proc. Am. Math. Soc. 142(11), 3889–3895 (2014)

    Article  MathSciNet  Google Scholar 

  2. Anandam, V.: Harmonic functions and potentials on finite or infinite networks. Lecture Notes of the Unione Matematica Italiana, vol. 12. Heidelberg: Springer, UMI, Bologna (2011)

  3. Anandam, V.: Subordinate harmonic structures in an infinite network. In: Complex analysis and potential theory, volume 55 of CRM Proc. Lecture Notes, pp. 301–314. American Mathematcial Society, Providence, RI (2012)

  4. Ancona, A., Lyons, R., Peres, Y.: Crossing estimates and convergence of Dirichlet functions along random walk and diffusion paths. Ann. Probab. 27(2), 970–989 (1999)

    Article  MathSciNet  Google Scholar 

  5. Arcozzi, N., Rochberg, R., Sawyer, E. T., Wick, B. D.: The Dirichlet space and related function spaces. Mathematical Surveys and Monographs, vol. 239. American Mathematical Society, Providence, RI (2019)

  6. Benjamini, I., Duminil-Copin, H., Kozma, G., Yadin, A.: Minimal growth harmonic functions on lamplighter groups. New York J. Math. 23, 833–858 (2017)

    MathSciNet  MATH  Google Scholar 

  7. Beznea, L., Vlădoiu, S.: Markov processes on the Lipschitz boundary for the Neumann and Robin problems. J. Math. Anal. Appl. 455(1), 292–311 (2017)

    Article  MathSciNet  Google Scholar 

  8. Bezuglyi, S., Jorgensen, P. E. T.: Graph Laplace and Markov operators on a measure space. In: Linear systems, signal processing and hypercomplex analysis, volume 275 of Oper. Theory Adv. Appl., pp. 67–138. Birkhäuser/Springer, Cham (2019)

  9. Bezuglyi, S., Jorgensen, P.E.T.: Monopoles, dipoles, and harmonic functions on Bratteli diagrams. Acta Appl. Math. 159, 169–224 (2019)

    Article  MathSciNet  Google Scholar 

  10. Bezuglyi, S., Jorgensen, P.E.T.: Harmonic analysis on graphs via Bratteli diagrams and path-space measures. arXiv:2007.15566 (2020)

  11. Bezuglyi, S., Karpel, O.: Bratteli diagrams: structure, measures, dynamics. In: Dynamics and numbers, volume 669 of Contemp. Math., pp. 1–36. American Mathematical Society, Providence, RI, (2016)

  12. Bezuglyi, S., Karpel, O.: Invariant measures for Cantor dynamical systems. In Dynamics: topology and numbers, volume 744 of Contemp. Math., pp. 259–295. American Mathematcial Society, [Providence], RI, (2020)

  13. Bezuglyi, S., Jorgensen, Palle E. T.: Representations of Cuntz-Krieger relations, dynamics on Bratteli diagrams, and path-space measures. In: Trends in harmonic analysis and its applications, volume 650 of Contemp. Math., pp. 57–88. American Mathematcial Society, Providence, RI (2015)

  14. Bratteli, O.: Inductive limits of finite dimensional \(C^{\ast } \)-algebras. Trans. Am. Math. Soc. 171, 195–234 (1972)

    MathSciNet  MATH  Google Scholar 

  15. Carmesin, J.: A characterization of the locally finite networks admitting non-constant harmonic functions of finite energy. Potential Anal. 37(3), 229–245 (2012)

    Article  MathSciNet  Google Scholar 

  16. Cho, I.: Algebras, Graphs and Their Applications. CRC Press, Boca Raton, FL (2014)

  17. Chung, K.L.: On the boundary theory for Markov chains II. Acta Math. 115, 111–163 (1966)

    Article  MathSciNet  Google Scholar 

  18. Chung, K.L.: Boundary behavior of Markov chains and its contributions to general processes. In: Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 2, pp. 499–505 (1971)

  19. Downham, D.Y., Fotopoulos, S.B.: The transient behaviour of the simple random walk in the plane. J. Appl. Probab. 25(1), 58–69 (1988)

    Article  MathSciNet  Google Scholar 

  20. Du, J.: On non-zero-sum stochastic game problems with stopping times. ProQuest LLC, Ann Arbor, MI. Thesis (Ph.D.)–University of Southern California (2012)

  21. Durand, F.: Combinatorics on Bratteli diagrams and dynamical systems. In: Combinatorics, automata and number theory, volume 135 of Encyclopedia Math. Appl., pp. 324–372. Cambridge Univ. Press, Cambridge (2010)

  22. Ervin Dutkay, D., Jorgensen, P.E.T.: Spectral theory for discrete Laplacians. Complex Anal. Oper. Theory 4(1), 1–38 (2010)

    Article  MathSciNet  Google Scholar 

  23. Friedrich, T., Göbel, A., Quinzan, F., Wagner, M.: Heavy-tailed mutation operators in single-objective combinatorial optimization. In: Parallel problem solving from nature—PPSN XV. Part I, volume 11101 of Lecture Notes in Comput. Sci., pp. 134–145. Springer, Cham (2018)

  24. Führ, H., Pesenson, I.Z.: Poincaré and Plancherel-Polya inequalities in harmonic analysis on weighted combinatorial graphs. SIAM J. Discrete Math. 27(4), 2007–2028 (2013)

    Article  MathSciNet  Google Scholar 

  25. Georgakopoulos, A.: Lamplighter graphs do not admit harmonic functions of finite energy. Proc. Am. Math. Soc. 138(9), 3057–3061 (2010)

    Article  MathSciNet  Google Scholar 

  26. Georgakopoulos, A.: Uniqueness of electrical currents in a network of finite total resistance. J. Lond. Math. Soc. (2) 82(1), 256–272 (2010)

    Article  MathSciNet  Google Scholar 

  27. Gerl, P.: Natural spanning trees of \(\mathbf{z}^d\) are recurrent. Discrete Math. 61(2–3), 333–336 (1986)

    Article  MathSciNet  Google Scholar 

  28. Giordano, T., Putnam, I.F., Skau, C.F.: Topological orbit equivalence and \(C^*\)-crossed products. J. Reine Angew. Math. 469, 51–111 (1995)

    MathSciNet  MATH  Google Scholar 

  29. Herman, R.H., Putnam, I.F., Skau, C.F.: Ordered Bratteli diagrams, dimension groups and topological dynamics. Internat. J. Math. 3(6), 827–864 (1992)

    Article  MathSciNet  Google Scholar 

  30. Jorgensen, P.E.T.: Unbounded graph-Laplacians in energy space, and their extensions. J. Appl. Math. Comput. 39(1–2), 155–187 (2012)

    Article  MathSciNet  Google Scholar 

  31. Jorgensen, P.E.T., Pearse, E.P.J.: A Hilbert space approach to effective resistance metric. Complex Anal. Oper. Theory 4(4), 975–1013 (2010)

    Article  MathSciNet  Google Scholar 

  32. Jorgensen, P.E. T., Pearse, E.P. J.: Resistance boundaries of infinite networks. In: Random walks, boundaries and spectra, volume 64 of Progr. Probab., pp. 111–142. Birkhäuser/Springer Basel AG, Basel (2011)

  33. Jorgensen, P.E.T., Pearse, E.P.J.: A discrete Gauss–Green identity for unbounded Laplace operators, and the transience of random walks. Israel J. Math. 196(1), 113–160 (2013)

    Article  MathSciNet  Google Scholar 

  34. Jorgensen, P.E.T., Pearse, E.P.J.: Spectral comparisons between networks with different conductance functions. J. Operator Theory 72(1), 71–86 (2014)

    Article  MathSciNet  Google Scholar 

  35. Jorgensen, P.E.T., Pearse, E.P.J.: Symmetric pairs and self-adjoint extensions of operators, with applications to energy networks. Complex Anal. Oper. Theory 10(7), 1535–1550 (2016)

    Article  MathSciNet  Google Scholar 

  36. Jorgensen, P.E.T., Pearse, E.P.J.: Symmetric pairs of unbounded operators in Hilbert space, and their applications in mathematical physics. Math. Phys. Anal. Geom. 20(2), 14 (2017)

  37. Jorgensen, P.E.T., Pearse, E.P.J.: Continuum versus discrete networks, graph Laplacians, and reproducing kernel Hilbert spaces. J. Math. Anal. Appl. 469(2), 765–807 (2019)

    Article  MathSciNet  Google Scholar 

  38. Jorgensen, P., Pearse, E., Tian, F.: Unbounded operators in Hilbert space, duality rules, characteristic projections, and their applications. Anal. Math. Phys. 8(3), 351–382 (2018)

    Article  MathSciNet  Google Scholar 

  39. Keane, M.: Reinforced random walk. In Entropy, search, complexity, vol. 16 of Bolyai Soc. Math. Stud.. Springer, Berlin pp. 151–158 (2007)

  40. Kigami, J.: Analysis on fractals. Cambridge Tracts in Mathematics, vol. 143. Cambridge University Press, Cambridge (2001)

  41. Kok, J., Sudev, N.K., Chithra, K.P., Mary, A.: Jaco-type graphs and black energy dissipation. Adv. Pure Appl. Math. 8(2), 141–152 (2017)

    Article  MathSciNet  Google Scholar 

  42. Kumar, V., Gavrilova, M.L., Tan, C.J.K., L’Ecuyer, P. (eds.): Computational science and its applications–ICCSA: Part I. Lecture Notes in Computer Science, vol. 2667. Springer, Berlin p. 2003 (2003)

  43. Lyons, T.: A simple criterion for transience of a reversible Markov chain. Ann. Probab. 11(2), 393–402 (1983)

    Article  MathSciNet  Google Scholar 

  44. Lyons, R., Peres, Y.: Probability on trees and networks. Cambridge Series in Statistical and Probabilistic Mathematics, vol. 42. Cambridge University Press, New York (2016)

  45. Miller, G.L., Peng, R.: Approximate maximum flow on separable undirected graphs. In: Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, Philadelphia, PA, pp. 1151–1170 (2012)

  46. O’Connor, M., Zhang, G.., Bastiaan K.., Abhayapala, W., Thushara, D.: Function splitting and quadratic approximation of the primal-dual method of multipliers for distributed optimization over graphs. IEEE Trans. Signal Inform. Process. Netw. 4(4), 656–666 (2018)

  47. Pesenson, I.: Sampling in Paley–Wiener spaces on combinatorial graphs. Trans. Am. Math. Soc. 360(10), 5603–5627 (2008)

    Article  MathSciNet  Google Scholar 

  48. Pesenson, I.: Variational splines and Paley–Wiener spaces on combinatorial graphs. Constr. Approx. 29(1), 1–21 (2009)

    Article  MathSciNet  Google Scholar 

  49. Petit, C.: Harmonic functions on hyperbolic graphs. Proc. Am. Math. Soc. 140(1), 235–248 (2012)

    Article  MathSciNet  Google Scholar 

  50. Putnam, I.F.: Cantor minimal systems. University Lecture Series, vol. 70. American Mathematical Society, Providence, RI (2018)

  51. Sokol, A.: An elementary proof that the first hitting time of an open set by a jump process is a stopping time. In: Séminaire de Probabilités XLV, volume 2078 of Lecture Notes in Math. Springer, Cham, pp. 301–304 (2013)

  52. St, C., Nash-Williams, J.A.: Random walk and electric currents in networks. Proc. Cambridge Philos. Soc. 55, 181–194 (1959)

  53. Veldt, N., Gleich, D.F., Wirth, A., Saunderson, J.: Metric-constrained optimization for graph clustering algorithms. SIAM J. Math. Data Sci. 1(2), 333–355 (2019)

    Article  MathSciNet  Google Scholar 

  54. Woess, W.: Random walks on infinite graphs and groups. Cambridge Tracts in Mathematics, vol. 138. Cambridge University Press, Cambridge (2000)

  55. Woess, W.: Denumerable Markov chains. EMS Textbooks in Mathematics. European Mathematical Society (EMS), Zürich, 2009. Generating functions, boundary theory, random walks on trees

  56. Yamasaki, M.: Discrete potentials on an infinite network. Mem. Fac. Sci. Shimane Univ. 13, 31–44 (1979)

    MathSciNet  MATH  Google Scholar 

  57. Grigor’yan, A.: Introduction to analysis on graphs. University Lecture Series, vol. 71. American Mathematical Society, Providence, RI (2018)

Download references

Acknowledgements

The authors are pleased to thank our colleagues and collaborators. We are especially thankful to the members of the seminars in Mathematical Physics and Operator Theory at the University of Iowa for many helpful conversations. The authors express their gratitude to the referee for careful reading and useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Palle E. T. Jorgensen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bezuglyi, S., Jorgensen, P.E.T. Harmonic Analysis Invariants for Infinite Graphs Via Operators and Algorithms. J Fourier Anal Appl 27, 34 (2021). https://doi.org/10.1007/s00041-021-09827-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00041-021-09827-0

Keywords

Mathematics Subject Classification

Navigation