Skip to main content
Log in

Kinetic maximal \(L^2\)-regularity for the (fractional) Kolmogorov equation

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

We introduce the notion of kinetic maximal \(L^2\)-regularity with temporal weights for the (fractional) Kolmogorov equation. In particular, we determine the function spaces for the inhomogeneity and the initial value which characterize the regularity of solutions to the fractional Kolmogorov equation in terms of fractional anisotropic Sobolev spaces. It is shown that solutions of the homogeneous (fractional) Kolmogorov equation define a semi-flow in a suitable function space and the property of instantaneous regularization is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Alexandre, Fractional order kinetic equations and hypoellipticity, Analysis and Applications 10, no. 03, 237–247 (2012).

    Article  MathSciNet  Google Scholar 

  2. P. Alphonse and J. Bernier, Smoothing Properties of Fractional Ornstein-Uhlenbeck Semigroups and Null-Controllability, ArXiv e-prints arXiv:1810.02629 (2018).

  3. H. Amann, Linear and Quasilinear Parabolic Problems: Volume I: Abstract Linear Theory, Monographs in Mathematics, Birkhäuser Basel (1995).

  4. W. Arendt, R. Chill, S. Fornaro, and C. Poupaud, \(L^p\)-maximal regularity for non-autonomous evolution equations, Journal of Differential Equations 237, no. 1, 1–26 (2007).

  5. S. Armstrong and J.-C. Mourrat, Variational methods for the kinetic Fokker-Planck equation, ArXiv e-prints arXiv:1902.04037 (2019).

  6. M. Bezard, Régularité\(L^p\)précisée des moyennes dans les équations de transport, Bulletin de la Société Mathématique de France 122, no. 1, 29–76 (1994).

  7. F. Bouchut, Hypoelliptic regularity in kinetic equations, Journal de Mathématiques Pures et Appliquées 81, no. 11, 1135–1159 (2002).

    Article  MathSciNet  Google Scholar 

  8. M. Bramanti, An Invitation to Hypoelliptic Operators and Hörmander’s Vector Fields, SpringerBriefs in Mathematics, Springer International Publishing (2014).

  9. M. Bramanti, G. Cupini, E. Lanconelli, and E. Priola, Global\(L^p\)estimates for degenerate Ornstein-Uhlenbeck operators, Mathematische Zeitschrift 266, no. 4, 789–816 (2010).

  10. M. Bramanti, G. Cupini, E. Lanconelli, and E. Priola, Global\(L^p\)estimates for degenerate Ornstein-Uhlenbeck operators with variable coefficients, Mathematische Nachrichten 286, no. 11-12, 1087–1101 (2013).

  11. J. A. Carrillo, Global weak solutions for the initial-boundary-value problems to the Vlasov-Poisson-Fokker-Planck system, Math. Methods Appl. Sci 21 (1998).

  12. Z.-Q. Chen and X. Zhang, \(L^p\)-maximal hypoelliptic regularity of nonlocal kinetic Fokker–Planck operators, Journal de Mathématiques Pures et Appliquées 116, 52–87 (2018).

  13. R. Denk, M. Hieber, J. Prüss, \({\cal{R}}\)-Boundedness, Fourier Multipliers and Problems of Elliptic and Parabolic Type. Mem. Amer. Math. Soc. 166, no. 788 (2003).

  14. B. Farkas and L. Lorenzi, On a class of hypoelliptic operators with unbounded coefficients in\({\mathbb{R}}^{N}\), Communications on Pure and Applied Mathematics 8, no. 4, 1159–1201 (2008).

  15. G. B. Folland and E. M. Stein, Estimates for the complex and analysis on the heisenberg group, Communications on Pure and Applied Mathematics 27, no. 4, 429–522 (1974).

    Article  MathSciNet  Google Scholar 

  16. F. Golse, C. Imbert, C. Mouhot, and A. Vasseur, Harnack inequality for kinetic Fokker-Planck equations with rough coefficients and application to the Landau equation. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 19, 253–295 (2019).

    MathSciNet  MATH  Google Scholar 

  17. A. Kolmogoroff, Zufällige Bewegungen (Zur Theorie der Brownschen Bewegung), Annals of Mathematics 35, no. 1, 116–117 (1934).

    Article  MathSciNet  Google Scholar 

  18. P. C. Kunstmann, L. Weis, Maximal\(L_p\)-regularity for parabolic equations, Fourier multiplier theorems and\(H^\infty \)-functional calculus. Functional analytic methods for evolution equations, 65–311, Lecture Notes in Math., 1855, Springer, Berlin (2004).

  19. E. Lanconelli and S. Polidoro, On a class of hypoelliptic evolution operators, Rend. Sem. Mat. Univ. Politec. Torino 52, 29–63 (1994).

    MathSciNet  MATH  Google Scholar 

  20. N. Lerner, Y. Morimoto, and K. Pravda-Starov, Hypoelliptic Estimates for a Linear Model of the Boltzmann Equation without Angular Cutoff, Communications in Partial Differential Equations 37, no. 2, 234–284 (2012).

    Article  MathSciNet  Google Scholar 

  21. L. Lorenzi, Analytical methods for Kolmogorov equations, Monographs and research notes in mathematics, CRC Press/Taylor & Francis Group (2017).

  22. A. Lunardi, Schauder estimates for a class of degenerate elliptic and parabolic operators with unbounded coefficients in\({\mathbb{R}}^{n}\), Annali della Scuola Normale Superiore di Pisa - Classe di Scienze Ser. 4 24, 133–164 (1997).

  23. G. Metafune, \(L^p\)-spectrum of Ornstein-Uhlenbeck operators, Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 30, no. 1, 97–124 (2001).

  24. G. Metafune, S. Fornaro, D. Pallara, and R. Schnaubelt, \(L^p\)-spectrum of degenerate hypoelliptic Ornstein-Uhlenbeck operators, Preprint (2020).

  25. L. Niebel and R. Zacher, Kinetic maximal\(L^p\)-regularity with temporal weights and application to quasilinear kinetic diffusion equations, ArXiv e-prints arXiv:2012.07768 (2020).

  26. J. Prüss and G. Simonett, Maximal regularity for evolution equations in weighted\(L_p\)-spaces, Archiv der Mathematik 82, no. 5, 415–431 (2004).

    Article  MathSciNet  Google Scholar 

  27. J. Prüss and G. Simonett, Moving Interfaces and Quasilinear Parabolic Evolution Equations, Monographs in Mathematics, Birkhäuser Basel (2016).

  28. L. P. Rothschild and E. M. Stein, Hypoelliptic differential operators and nilpotent groups, Acta Mathematica 137, 247–320 (1976).

    Article  MathSciNet  Google Scholar 

  29. Y. Sawano, Theory of Besov spaces, Springer Berlin Heidelberg (2018).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rico Zacher.

Additional information

Dedicated to Matthias Hieber on the occasion of his 60th birthday

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first author is supported by a graduate scholarship (“Landesgraduiertenstipendium”) granted by the State of Baden-Wuerttemberg, Germany (Grant Number 1902 LGFG-E).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niebel, L., Zacher, R. Kinetic maximal \(L^2\)-regularity for the (fractional) Kolmogorov equation. J. Evol. Equ. 21, 3585–3612 (2021). https://doi.org/10.1007/s00028-021-00669-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-021-00669-3

Keywords

Mathematics Subject Classification

Navigation