Skip to main content
Log in

Impact of nickel nanoparticles on biogas production from cattle manure

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The presence of nano-nutrients can be stimulatory for the anaerobic digestion (AD) of hardly degradable wastes and thus enhance process performance. One of the essential trace elements, nickel (Ni), is involved in multiple important enzymes necessary for efficient AD. This study investigated the effects of Ni nanoparticles (NPs) with different concentrations on cattle manure AD performance and effluent chemical composition. The results showed that the highest specific biogas production was attained with 4 mg/L Ni NPs (p<0.05) and was 792.00 mL/g VS compared with cattle manure-only which yielded only 589.20 mL/g VS. Moreover, the addition of 2 mg/L Ni NPs significantly increases the methane yield (p<0.05) by 70.46% compared with cattle manure-only. Besides, H2S production decreased by 16.50%, 90.47%, and 51.89% compared with cattle manure-only when the cattle manure was treated by 1, 2, and 4 mg/L Ni NPs, respectively. The supplementation of bio-digester with 2 mg/L Ni NPs improved the total and volatile solids removal efficiencies by 19.2% and 12.1% and maintained pH at a suitable level (6.8–7.3). FTIR spectrum of effluent presented the addition of Ni NPs changed the intensity and shift of peaks compared with cattle manure-only peak. Moreover, all of the effluent samples from the AD systems using Ni NPs showed stronger fertilizer values, as well as the effluent with 2 mg/L Ni NPs, had the highest sulfide content (31.2%, increase), leading to higher H2S removal efficiency by 47.5%. A first-order kinetic model showed an increase up to 1.88-fold in the hydrolysis rate constant (K), in 4mg/L Ni NPs compared to cattle manure-only, leading to higher biogas yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Li Y, Zhao J, Krooneman J, Euverink GJW (2020a) Strategies to boost anaerobic digestion performance of cow manure: Laboratory achievements and their full-scale application potential. Sci Total Environ 755:142940. https://doi.org/10.1016/j.scitotenv.2020.142940

    Article  Google Scholar 

  2. Li Y, Zhao J, Achinas S, Zhang Z, Krooneman J, Euverink GJW (2020b) The biomethanation of cow manure in a continuous anaerobic digester can be boosted via a bioaugmentation culture containing Bathyarchaeota. Sci Total Environ 745:141042. https://doi.org/10.1016/j.scitotenv.2020.141042

    Article  Google Scholar 

  3. Ganzoury MA, Allam NK (2015) Impact of nanotechnology on biogas production: a mini-review. Renew Sust Energ Rev 50:1392–1404. https://doi.org/10.1016/j.rser.2015.05.073

    Article  Google Scholar 

  4. Wang K, Yun S, Xing T, Li B, Abbas Y, Liu X (2020a) Binary and ternary trace elements to enhance anaerobic digestion of cattle manure: Focusing on kinetic models for biogas production and digestate utilization. Bioresour Technol 323:124571. https://doi.org/10.1016/j.biortech.2020.124571

    Article  Google Scholar 

  5. Chen M, Liu S, Yuan X, Li QX, Wang F, Xin F, Wen B (2021) Methane production and characteristics of the microbial community in the co-digestion of potato pulp waste and dairy manure amended with biochar. Renew Energy 163:357–367. https://doi.org/10.1016/j.renene.2020.09.006

    Article  Google Scholar 

  6. Wang Z, Yun S, Shi J, Han F, Liu B, Wang R, Li X (2020b) Critical Evidence for Direct Interspecies Electron Transfer with Tungsten-based Accelerants: An Experimental and Theoretical Investigation. Bioresour Technol 311:123519. https://doi.org/10.1016/j.biortech.2020.123519

    Article  Google Scholar 

  7. Abbas Y, Jamil F, Rafiq S, Ghauri M, Khurram MS, Aslam M, Bokhari A, Faisal A, Rashid U, Yun S, Mubeen M (2020) Valorization of solid waste biomass by inoculation for the enhanced yield of biogas. Clean Technol Environ 22(2):513–522. https://doi.org/10.1007/s10098-019-01799-6

    Article  Google Scholar 

  8. Sahota S, Shah G, Ghosh P, Kapoor R, Sengupta S, Singh P, Vijay V, Sahay A, Vijay VK, Thakur IS (2018) Review of trends in biogas upgradation technologies and future perspectives. Bioresour Technol Rep 1:79–88. https://doi.org/10.1016/j.biteb.2018.01.002

    Article  Google Scholar 

  9. Achinas S, Achinas V, Euverink GJW (2017) A technological overview of biogas production from biowaste. Eng 3(3):299–307. https://doi.org/10.1016/J.ENG.2017.03.002

    Article  Google Scholar 

  10. Chen J, Yun S, Shi J, Wang Z, Abbas Y, Wang K, Han F, Jia B, Xu H, Xing T, Li B (2020) Role of biomass-derived carbon-based composite accelerants in enhanced anaerobic digestion: Focusing on biogas yield, fertilizer utilization, and density functional theory calculations. Bioresour Technol 307:123204. https://doi.org/10.1016/j.biortech.2020.123204

    Article  Google Scholar 

  11. Xu H, Yun S, Wang C, Wang Z, Han F, Jia B, Chen J, Li B (2020) Improving performance and phosphorus content of anaerobic co-digestion of dairy manure with aloe peel waste using vermiculite. Bioresour Technol 301:122753. https://doi.org/10.1016/j.biortech.2020.122753

    Article  Google Scholar 

  12. Jia B, Yun S, Shi J, Han F, Wang Z, Chen J, Abbas Y, Xu H, Wang K, Xing T (2020) Enhanced anaerobic mono-and co-digestion under mesophilic condition: Focusing on the magnetic field and Ti-sphere core–shell structured additives. Bioresour Technol 310:123450. https://doi.org/10.1016/j.biortech.2020.123450

    Article  Google Scholar 

  13. Sreekrishnan TR, Kohli S, Rana V (2004) Enhancement of biogas production from solid substrates using different techniques-a review. Bioresour Technol 95(1):1–10. https://doi.org/10.1016/j.biortech.2004.02.010

    Article  Google Scholar 

  14. Yun S, Xing T, Han F, Shi J, Wang Z, Fan Q, Xu H (2020) Enhanced direct interspecies electron transfer with transition metal oxide accelerants in anaerobic digestion. Bioresour Technol 320:124294. https://doi.org/10.1016/j.biortech.2020.124294

    Article  Google Scholar 

  15. Yun S, Zhang C, Wang Y, Zhu J, Huang X, Du T, Li X, Wei Y (2019) Synergistic effects of Fe salts and composite additives on anaerobic digestion of dairy manure. Int Biodeterior Biodegrad 136:82–90. https://doi.org/10.1016/j.ibiod.2018.10.011

    Article  Google Scholar 

  16. Bourven I, Casellas M, Buzier R, Lesieur J, Lenain JF, Faix A, Bressolier P, Maftah C, Guibaud G (2017) Potential of DGT in a new fractionation approach for studying trace metal element impact on anaerobic digestion: the example of cadmium. Int Biodeterior Biodegrad 119:188–195. https://doi.org/10.1016/j.ibiod.2016.11.007

    Article  Google Scholar 

  17. Moestedt J, Nordell E, Yekta SS, Lundgren J, Martí M, Sundberg C, Ejlertsson J, Svensson BH, Björn A (2016) Effects of trace element addition on process stability during anaerobic co-digestion of OFMSW and slaughterhouse waste. Waste Manag 47:11–20. https://doi.org/10.1016/j.wasman.2015.03.007

    Article  Google Scholar 

  18. Vignais PM, Billoud B (2007) Occurrence, classification, and biological function of hydrogenases: an overview. Chem Rev 107(10):4206–4272. https://doi.org/10.1021/cr050196r

    Article  Google Scholar 

  19. Fournier GP, Gogarten JP (2008) Evolution of acetoclastic methanogenesis in Methanosarcina via horizontal gene transfer from cellulolytic Clostridia. J Bacteriol 190(3):1124–1127. https://doi.org/10.1128/JB.01382-07

    Article  Google Scholar 

  20. Ko JH, Wang N, Yuan T, Lü F, He P, Xu Q (2018) Effect of nickel-containing activated carbon on food waste anaerobic digestion. Bioresour Technol 266:516–523. https://doi.org/10.1016/j.biortech.2018.07.015

    Article  Google Scholar 

  21. Romero-Güiza MS, Vila J, Mata-Alvarez J, Chimenos JM, Astals S (2016) The role of additives on anaerobic digestion: a review. Renew Sust Energ Rev 58:1486–1499. https://doi.org/10.1016/j.rser.2015.12.094

    Article  Google Scholar 

  22. Prakash D, Wu Y, Suh SJ, Duin EC (2014) Elucidating the process of activation of methyl-coenzyme M reductase. J Bacteriol 196(13):2491–2498. https://doi.org/10.1128/JB.01658-14

    Article  Google Scholar 

  23. Thauer RK, Kaster AK, Seedorf H, Buckel W, Hedderich R (2008) Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol 6(8):579–591. https://doi.org/10.1038/nrmicro1931

    Article  Google Scholar 

  24. Chen JL, Steele TW, Stuckey DC (2016) Stimulation and inhibition of anaerobic digestion by nickel and cobalt: a rapid assessment using the resazurin reduction assay. Environ Technol 50(20):11154–11163. https://doi.org/10.1021/acs.est.6b03522

    Article  Google Scholar 

  25. Abdelsalam E, Samer M, Attia YA, Abdel-Hadi MA, Hassan HE, Badr Y (2016) Comparison of nanoparticles effects on biogas and methane production from anaerobic digestion of cattle dung slurry. Renew Energy 87:592–598. https://doi.org/10.1016/j.renene.2015.10.053

    Article  Google Scholar 

  26. Abdelwahab TA, Mohanty MK, Sahoo PK, Behera D (2020) Application of nanoparticles for biogas production: Current status and perspectives. Energ Source Part A 1:1–3. https://doi.org/10.1080/15567036.2020.1767730

    Article  Google Scholar 

  27. Abdelsalam E, Samer M, Attia YA, Abdel-Hadi MA, Hassan HE, Badr Y (2017) Effects of Co and Ni nanoparticles on biogas and methane production from anaerobic digestion of slurry. Energy Convers Manag 141:108–119. https://doi.org/10.1016/j.enconman.2016.05.051

    Article  Google Scholar 

  28. Hassanein A, Lansing S, Tikekar R (2019) Impact of metal nanoparticles on biogas production from poultry litter. Bioresour Technol 275:200–206. https://doi.org/10.1016/j.biortech.2018.12.048

    Article  Google Scholar 

  29. He CS, Ding RR, Wang YR, Li Q, Wang YX, Mu Y (2019) Insights into short-and long-term effects of loading nickel nanoparticles on anaerobic digestion with flocculent sludge. Environ Sci Nano 6(9):2820–2831. https://doi.org/10.1039/C9EN00628A

    Article  Google Scholar 

  30. Wang T, Zhang D, Dai L, Chen Y, Dai X (2016) Effects of metal nanoparticles on methane production from waste-activated sludge and microorganism community shift in anaerobic granular sludge. Sci Rep 6(1):1–10. https://doi.org/10.1038/srep25857

    Article  Google Scholar 

  31. Mu H, Chen Y (2011) Long-term effect of ZnO nanoparticles on waste activated sludge anaerobic digestion. Water Res 45(17):5612–5620. https://doi.org/10.1016/j.watres.2011.08.022

    Article  Google Scholar 

  32. Nguyen D, Visvanathan C, Jacob P, Jegatheesan V (2015) Effects of nano cerium (IV) oxide and zinc oxide particles on biogas production. Int Biodeterior Biodegradation 102:165–171. https://doi.org/10.1016/j.ibiod.2015.02.014

    Article  Google Scholar 

  33. Abdelwahab TAM, Mohanty MK, Sahoo PK, Behera D (2020) Impact of iron nanoparticles on biogas production and effluent chemical composition from anaerobic digestion of cattle manure, Biomass Convers. Bioref 1-13. https://doi.org/10.1007/s13399-020-00985-7

  34. Abdelwahab TAM, Mohanty MK, Sahoo PK, Behera D (2021) Metal nanoparticle mixtures to improve the biogas yield of cattle manure, Biomass Convers. Bioref 1-12. https://doi.org/10.1007/s13399-021-01286-3

  35. APHA (ed) (2005) Standard Methods for Examination of Water and Wastewater, 21st edn. APHA, Washington

    Google Scholar 

  36. APHA (1995) Standard Methods for Examination of Water and Wastewater, American Public Health Association. (APHA), Washington

    Google Scholar 

  37. Yun S, Fang W, Du T, Hu X, Huang X, Li X, Zhang C, Lund PD (2018) Use of bio-based carbon materials for improving biogas yield and digestate stability. Energy 164:898–909. https://doi.org/10.1016/j.energy.2018.09.067

    Article  Google Scholar 

  38. Li X, Yun S, Zhang C, Fang W, Huang X, Du T (2018) Application of nano-scale transition metal carbides as accelerants in anaerobic digestion. Int J Hydrog Energy 43(3):1926–1936. https://doi.org/10.1016/j.ijhydene.2017.11.092

    Article  Google Scholar 

  39. Zhang W, Wei Q, Wu S, Qi D, Li W, Zuo Z, Dong R (2014) Batch anaerobic co-digestion of pig manure with dewatered sewage sludge under mesophilic conditions. Appl Energy 128:175–183. https://doi.org/10.1016/j.apenergy.2014.04.071

    Article  Google Scholar 

  40. Yuan T, Shi X, Sun R, Ko JH, Xu Q (2020) Simultaneous addition of biochar and zero-valent iron to improve food waste anaerobic digestion. J Clean Prod 278:123627. https://doi.org/10.1016/j.jclepro.2020.123627

    Article  Google Scholar 

  41. Farghali M, Andriamanohiarisoamanana FJ, Ahmed MM, Kotb S, Yamashiro T, Iwasaki M, Umetsu K (2019) Impacts of iron oxide and titanium dioxide nanoparticles on biogas production: Hydrogen sulfide mitigation, process stability, and prospective challenges. J Environ Manag 240:160–167. https://doi.org/10.1016/j.jenvman.2019.03.089

    Article  Google Scholar 

  42. Ali A, Mahar RB, Abdelsalam EM, Sherazi STH (2019) Kinetic modeling for bioaugmented anaerobic digestion of the organic fraction of municipal solid waste by using Fe3O4 nanoparticles. Waste Biomass Valori 10(11):3213–3224. https://doi.org/10.1007/s12649-018-0375-x

    Article  Google Scholar 

  43. Cai Y, Zhao X, Zhao Y, Wang H, Yuan X, Zhu W, Cui Z, Wang X (2018) Optimization of Fe2+ supplement in anaerobic digestion accounting for the Fe-bioavailability. Bioresour Technol 250:163–170. https://doi.org/10.1016/j.biortech.2017.07.151

    Article  Google Scholar 

  44. Andriamanohiarisoamanana FJ, Shirai T, Yamashiro T, Yasui S, Iwasaki M, Ihara I, Nishida T, Tangtaweewipat S, Umetsu K (2018) Valorizing waste iron powder in biogas production: Hydrogen sulfide control and process performances. J Environ Manag 208:134–141. https://doi.org/10.1016/j.jenvman.2017.12.012

    Article  Google Scholar 

  45. Kafle GK, Kim SH (2013) Anaerobic treatment of apple waste with swine manure for biogas production: batch and continuous operation. Appl Energy 103:61–72. https://doi.org/10.1016/j.apenergy.2012.10.018

    Article  Google Scholar 

  46. Zhang Y, Feng Y, Yu Q, Xu Z, Quan X (2014b) Enhanced high-solids anaerobic digestion of waste activated sludge by the addition of scrap iron. Bioresour Technol 159:297–304. https://doi.org/10.1016/j.biortech.2014.02.114

    Article  Google Scholar 

  47. Bożym M, Florczak I, Zdanowska P, Wojdalski J, Klimkiewicz M (2015) An analysis of metal concentrations in food wastes for biogas production. Renew Energy 77:467–472. https://doi.org/10.1016/j.renene.2014.11.010

    Article  Google Scholar 

  48. Elreedy A, Ibrahim E, Hassan N, El-Dissouky A, Fujii M, Yoshimura C, Tawfik A (2017) Nickel-graphene nanocomposite as a novel supplement for enhancement of biohydrogen production from industrial wastewater containing mono-ethylene glycol. Energy Convers Manag 140:133–144. https://doi.org/10.1016/j.enconman.2017.02.080

    Article  Google Scholar 

  49. Zhang WX (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5(3-4):323–332. https://doi.org/10.1023/A:1025520116015

    Article  Google Scholar 

  50. Altaş L (2009) Inhibitory effect of heavy metals on methane-producing anaerobic granular sludge. J Hazard Mater 162(2-3):1551–1556. https://doi.org/10.1016/j.jhazmat.2008.06.048

    Article  Google Scholar 

  51. Wu D, Yang Z, Tian G (2011) Inhibitory effects of Cu (II) on fermentative methane production using bamboo wastewater as substrate. J Hazard Mater 195:170–174. https://doi.org/10.1016/j.jhazmat.2011.08.021

    Article  Google Scholar 

  52. Hu QH, Li XF, Du GC, Chen J (2008) Effect of nitrilotriacetic acid on bioavailability of nickel during methane fermentation. Chem Eng J 143(1-3):111–116. https://doi.org/10.1016/j.cej.2007.12.021

    Article  Google Scholar 

  53. Tsapekos P, Alvarado-Morales M, Tong J, Angelidaki I (2018) Nickel spiking to improve the methane yield of sewage sludge. Bioresour Technol 270:732–737. https://doi.org/10.1016/j.biortech.2018.09.136

    Article  Google Scholar 

  54. Boer JL, Mulrooney SB, Hausinger RP (2014) Nickel-dependent metalloenzymes. Arch Biochem Biophys 544:142–152. https://doi.org/10.1016/j.abb.2013.09.002

    Article  Google Scholar 

  55. Trifunović D, Schuchmann K, Müller V (2016) Ethylene glycol metabolism in the acetogen Acetobacterium woodii. J Bacteriol 198(7):1058–1065. https://doi.org/10.1128/JB.00942-15

    Article  Google Scholar 

  56. Ogejo J A, Wen Z, Ignosh J, Bendfeldt E, Collins ER (2009) Biomethane Technology Virginia Cooperative Extension, pp 442–881. http://hdl.handle.net/10919/50131

  57. Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Bioresour Technol 99(10):4044–4064. https://doi.org/10.1016/j.biortech.2007.01.057

    Article  Google Scholar 

  58. Bayr S, Pakarinen O, Korppoo A, Liuksia S, Väisänen A, Kaparaju P, Rintala J (2012) Effect of additives on process stability of mesophilic anaerobic monodigestion of pig slaughterhouse waste. Bioresour Technol 120:106–113. https://doi.org/10.1016/j.biortech.2012.06.009

    Article  Google Scholar 

  59. Wei Q, Zhang W, Guo J, Wu S, Tan T, Wang F, Dong R (2014) Performance and kinetic evaluation of a semi-continuously fed anaerobic digester treating food waste: effect of trace elements on the digester recovery and stability. Chemosphere 117:477–485. https://doi.org/10.1016/j.chemosphere.2014.08.060

    Article  Google Scholar 

  60. Tsapekos P, Kougias PG, Vasileiou SA, Lyberatos G, Angelidaki I (2017) Effect of micro-aeration and inoculum type on the biodegradation of lignocellulosic substrate. Bioresour Technol 225:246–253. https://doi.org/10.1016/j.biortech.2016.11.081

    Article  Google Scholar 

  61. Liu A, Xu S, Lu C, Peng P, Zhang Y, Feng D, Liu Y (2014) Anaerobic fermentation by aquatic product wastes and other auxiliary materials. Clean Technol Environ 16(2):415–421. https://doi.org/10.1007/s10098-013-0640-4

    Article  Google Scholar 

  62. Romsaiyud A, Songkasiri W, Nopharatana A, Chaiprasert P (2009) Combination effect of pH and acetate on enzymatic cellulose hydrolysis. Environ Technol 21(7):965–970. https://doi.org/10.1016/S1001-0742(08)62369-4

    Article  Google Scholar 

  63. Ahn HK, Smith MC, Kondrad SL, White JW (2010) Evaluation of biogas production potential by dry anaerobic digestion of switchgrass–animal manure mixtures. Appl Biochem Biotechnol 160(4):965–975. https://doi.org/10.1007/s12010-009-8624-x

    Article  Google Scholar 

  64. Suanon F, Sun Q, Li M, Cai X, Zhang Y, Yan Y, Yu CP (2017) Application of nanoscale zero valent iron and iron powder during sludge anaerobic digestion: Impact on methane yield and pharmaceutical and personal care products degradation. J Hazard Mater 321:47–53. https://doi.org/10.1016/j.jhazmat.2016.08.076

    Article  Google Scholar 

  65. Muyzer G, Stams AJ (2008) The ecology and biotechnology of sulphate-reducing bacteria. Nat Rev Microbiol 6(6):441–454. https://doi.org/10.1038/nrmicro1892

    Article  Google Scholar 

  66. Sevcu A, El-Temsah YS, Joner EJ, Cernik M (2011) Oxidative stress induced in microorganisms by zero-valent iron nanoparticles. Microbes Environ 26(4):271–281. https://doi.org/10.1264/jsme2.me11126

    Article  Google Scholar 

  67. Jin H, Chang Z (2011) Distribution of heavy metal contents and chemical fractions in anaerobically digested manure slurry. Appl Biochem Biotechnol 164(3):268–282. https://doi.org/10.1007/s12010-010-9133-7

    Article  Google Scholar 

  68. Jeon D, Chung K, Shin J, Park CM, Shin SG, Kim YM (2020) Reducing food waste in residential complexes using a pilot-scale on-site system. Bioresour Technol 311:123497. https://doi.org/10.1016/j.biortech.2020.123497

    Article  Google Scholar 

  69. Möller K, Müller T (2012) Effects of anaerobic digestion on digestate nutrient availability and crop growth: A review. Eng Life Sci 12(3):242–257. https://doi.org/10.1002/elsc.201100085

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of Indian Council of Agricultural Research (ICAR). We would also like to acknowledge Odisha University of Agriculture & Technology (OUAT). A special thank you is due to the College of Agricultural Engineering and Technology Renewable Energy laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taha Abdelfattah Mohammed Abdelwahab.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Adding Ni NPs increased the cumulative CH4 yield by 17.45–70.68 %.

• Removal efficiencies of H2S increased in the presence of Ni NPs up to 47.50%.

• Effluent with Ni NPs showed stronger fertilizer values.

• Two kinetic models (FOM and MGM) are employed to predict biogas yield.

• Predicted data (1.86–2.44%) of MGM is closer to measured data than FOM.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelwahab, T.A.M., Mohanty, M.K., Sahoo, P.K. et al. Impact of nickel nanoparticles on biogas production from cattle manure. Biomass Conv. Bioref. 13, 5205–5218 (2023). https://doi.org/10.1007/s13399-021-01460-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-01460-7

Keywords

Navigation