Skip to main content
Log in

A Better Understanding of How Polymer Composition Affects Sensing Performance of Molecularly Imprinted Photonic Polymer

  • FUNCTIONAL POLYMERS
  • Published:
Polymer Science, Series B Aims and scope Submit manuscript

Abstract

Molecularly imprinted photonic polymer is an ideal sensory material due to high specificity and selectivity. Polymer composition plays a vital role in determining its sensing performance. For better understanding the effects of polymer composition, herein we reported the interactive effects of polymer composition on sensing performance by using Response surface methodology. We fabricated L-tryptophan molecularly imprinted photonic polymer by using maleic anhydride modified by β-cyclodextrin (MAH-β-CD) and acrylamide as dual functional monomers, N,N’-methylene bisacrylamide as cross-linker. A second-order polynomial model was proposed for describing the relationship between polymer composition and its sensing performance. This model reveled that MAH-β-CD and cross-linker were dominant in determining the sensing performance of demonstrated molecularly imprinted photonic polymer, and proved the existence of interactive effects of polymer composition on sensing performance, which have been ignored before and need to be considered in the future study of molecularly imprinted photonic polymer. It is anticipated that this work would provide an important guidance for rational design of molecularly imprinted photonic polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. A. C. Edrington, A. Urbas, P. Derege, C. X. Chen, T. M. Swager, N. Hadjichristidis, M. Xenidou, L. J. Fetters, J. D. Joannopoulos, and Y. Fink, Adv. Mater. 13, 421 (2001).

    Article  CAS  Google Scholar 

  2. E. Yablonovitch, T. J. Gmitter, K. Leung, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, Opt. Quantum Electron. 24, S273 (1992).

    Article  CAS  Google Scholar 

  3. C. Fenzl, T. Hirsch, and O. S. Wolfbeis, Angew. Chem. 53, 3318 (2014).

    Article  CAS  Google Scholar 

  4. J. Zhang, X. Chao, X. Liu, and S. A. Asher, Chem. Commun. 49, 6337 (2013).

    Article  CAS  Google Scholar 

  5. J. Zhang, Z. Cai, D. H. Kwak, X. Liu, and S. A. Asher, Anal. Chem. 86, 9036 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. J. H. Holtz and S. A. Asher, Nature 389, 829 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. J. Wang, Y. Zhang, T. Zhao, Y. Song, and L. Jiang, Sci. Chin. Chem. 53, 318 (2010).

    Article  CAS  Google Scholar 

  8. L. Xu, J. Wang, Y. Song, and L. Jiang, Chem. Mater. 20, 3554 (2008).

    Article  CAS  Google Scholar 

  9. D. P. Puzzo, A. C. Arsenault, I. Manners, and G. A. Ozin, Angew. Chem. 48, 943 (2009).

    Article  CAS  Google Scholar 

  10. K. Chen, Q. Fu, S. Ye, and J. Ge, Adv. Funct. Mater. 27, 1702825 (2017).

    Article  CAS  Google Scholar 

  11. P. Wu, X. Shen, C. G. Schafer, J. Pan, J. Guo, and C. Wang, Nanoscale 11, 20015 (2019).

    Article  CAS  PubMed  Google Scholar 

  12. W. Park and J. Lee, Appl. Phys. Lett. 85, 4845 (2004).

    Article  CAS  Google Scholar 

  13. R. Zhang, Q. Wang, and X. Zheng, J. Mater. Chem. C 6, 3182 (2018).

    Article  CAS  Google Scholar 

  14. M. Shang, X. Ni, J. Xu, and Y. Cao, RSC Adv. 9, 41280 (2019).

  15. H. Ma, M. Zhu, W. Luo, W. Li, K. Fang, F. Mou, and J. Guan, J. Mater. Chem. C 3, 2848 (2015).

    Article  CAS  Google Scholar 

  16. J. D. D. And and L. A. Lyon, J. Phys. Chem. B 104, 6327 (2000).

    Article  CAS  Google Scholar 

  17. X. Fei, T. Lu, J. Ma, S. Zhu, and D. Zhang, Nanoscale 9, 12969 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. K. Matsubara, M. Watanabe, and Y. Takeoka, Angew. Chem. 46, 1688 (2007).

    Article  CAS  Google Scholar 

  19. R. V. Nair and R. Vijaya, Prog. Quantum Electron. 34, 89 (2010).

    Article  CAS  Google Scholar 

  20. J. Hou, M. Li, and Y. Song, Angew. Chem. 57, 2544 (2018).

    Article  CAS  Google Scholar 

  21. X. Hu, Q. An, G. Li, S. Tao, and J. Liu, Angew. Chem. 45, 8145 (2006).

    Article  CAS  Google Scholar 

  22. Z. Wu, C. Tao, C. Lin, D. Shen, and G. Li, Chem. Eur. J. 14, 11358 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. J. Li, Z. Zhang, S. Xu, L. Chen, N. Zhou, H. Xiong, and H. Peng, J. Mater. Chem. 21, 19267 (2011).

    Article  CAS  Google Scholar 

  24. D. Xu, W. Zhu, Y. Jiang, X. Li, W. Li, J. Cui, J. Yin, and G. Li, J. Mater. Chem. 22, 16572 (2012).

    Article  CAS  Google Scholar 

  25. L. Wang, F. Lin, and L. Yu, Analyst 137, 3502 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. M. Liu and L. Yu, Analyst 138, 3376 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. N. Sai, B. Ning, G. Huang, Y. Wu, Z. Zhou, Y. Peng, J. Bai, G. Yu, and Z. Gao, Analyst 138, 2720 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. X. Liu, H. Fang, and L. Yu, Talanta 116, 283 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Y. Zhang, P. Zhao, and L. Yu, Sens. Actuators, B 181, 850 (2013).

    Article  CAS  Google Scholar 

  30. Y. Zhang, Z. Pan, Y. Yuan, Z. Sun, J. Ma, G. Huang, F. Xing, and J. Gao, Phys. Chem. Chem. Phys. 15, 17250 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. X. Wang, Z. Mu, R. Liu, Y. Pu, and L. Yin, Food Chem. 141, 3947 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. F. Xue, Z. Meng, Y. Wang, S. Huang, Q. Wang, W. Lu, and M. Xue, Anal. Methods 6, 831 (2014).

    Article  CAS  Google Scholar 

  33. Z. Yang, D. Shi, M. Chen, and S. Liu, Anal. Methods 7, 8352 (2015).

    Article  CAS  Google Scholar 

  34. J. Hou, H. Zhang, Q. Yang, M. Li, L. Jiang, and Y. Song, Small 11, 2738 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. A. You, Y. Cao, and G. Cao, RSC Adv. 6, 83663 (2016).

  36. X. Qiu, W. Chen, Y. Luo, Y. Wang, Y. Wang, and H. Guo, Anal. Chim. Acta 1093, 142 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. Y. Zhang, H. Ren, and L. Yu, Anal. Methods 10, 101 (2018).

    Article  CAS  Google Scholar 

  38. L. Li, Z. Lin, Z. Huang, and A. Peng, Food Chem. 281, 57 (2019).

    Article  CAS  PubMed  Google Scholar 

  39. X. Hu, G. Li, J. Huang, D. Zhang, and Y. Qiu, Adv. Mater. 19, 4327 (2007).

    Article  CAS  Google Scholar 

  40. W. Chen, W. Lei, M. Xue, F. Xue, Z. Meng, W. Zhang, F. Qu, and K. J. Shea, J. Mater. Chem. 2, 7165 (2014).

    Article  CAS  Google Scholar 

  41. D. Pan, M. Xun, H. Lan, J. Li, Z. Wu, and Y. Guo, Anal. Bioanal. Chem. 411, 7737 (2019).

    Article  CAS  PubMed  Google Scholar 

  42. J. Kalecki, M. Cieplak, M. Dabrowski, W. Lisowski, A. Kuhn, and P. S. Sharma, ACS Sens. 5, 118 (2020).

    Article  CAS  PubMed  Google Scholar 

  43. T. Yamamoto, Y. Kanda, and K. Higashitani, Langmuir 20, 4400 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. D. Bas and I. H. Boyaci, J. Food Eng. 78, 836 (2007).

    Article  CAS  Google Scholar 

  45. M. Balachandran, S. Devanathan, R. Muraleekrishnan, and S. S. Bhagawan, Mater. Des. 35, 854 (2012).

    Article  CAS  Google Scholar 

  46. A. Koohpaei, S. J. Shahtaheri, M. R. Ganjali, A. R. Forushani, and F. Golbabaei, Talanta 75, 978 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. K. J. Rao, C. H. Kim, and S. Rhee, Process Biochem. 35, 639 (2000).

    Article  CAS  Google Scholar 

  48. L. Qin, X. He, W. Li, and Y. Zhang, J. Chromatogr. A 1187, 94 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was funded by the National Nature Science Foundation of China (Grant no. 21571084), National First-Class Discipline Program of Light Industry Technology and Engineering (LIFE2018-19), and MOE and SAFEA for the 111 Project (B13025).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhangyong Yu or Mingqing Chen.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhaokun Yang, Yu, Z., Shi, D. et al. A Better Understanding of How Polymer Composition Affects Sensing Performance of Molecularly Imprinted Photonic Polymer. Polym. Sci. Ser. B 63, 142–151 (2021). https://doi.org/10.1134/S1560090421020111

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560090421020111

Navigation