Skip to main content
Log in

Ring-Opening Polymerization of 2,2-Dimethyltrimethylene Carbonate Using Samarium Acetate(III) as an Initiator

  • POLYMERIZATION
  • Published:
Polymer Science, Series B Aims and scope Submit manuscript

Abstract

In this work the activity of samarium(III) acetate was analyzed as a possible initiator in the ring opening polymerization of 2,2-dymetyltrimethylene carbonate. Polymerizations were carried out under solvent-free melt conditions in ampoules-like flasks, equipped with a magnetic stirrer. The effects of temperature, molar ratio monomer to initiator and reaction time on the polymerization features were analyzed. The results indicate that the samarium(III) acetate initiates the polymerization of 2,2-dymetyltrimethylene carbonate, which proceeds up to high conversion and the polymerization rate is first-order with respect to monomer concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. M. S. Lindblad, Y. Liu, A. C. Albertsson, E. Ranucci, and S. Karlsson, Adv. Polym. Sci. 157, 139 (2002).

    Article  CAS  Google Scholar 

  2. Y. Ikada and H. Tsuji, Macromol. Rapid Commun. 21, 117 (2000).

    Article  CAS  Google Scholar 

  3. J. de Oliveira, L. P. S. Vandenberghe, S. F. Zawadzki, C. Rodrigues, J. C. de Carvalho, and C. R. Soccol, “Production and application of polylactides. Current developments in biotechnology and bioengineering,” in Production, Isolation and Purification of Industrial Products, Ed. by A. Pandey, S. Negi, and C. R. Soccol (Elsevier, Netherlands, 2017).

    Google Scholar 

  4. I. Manavitehrani, A. Fathi, H. Badr, S. Daly, A. N. Shirazi, and F. Dehghani, Polymers 8, 20 (2016).

    Article  PubMed Central  Google Scholar 

  5. R. P. Brannigan and A. P. Dove, Biomater. Sci. 5, 9 (2017).

    Article  CAS  Google Scholar 

  6. M. Vert, Biomacromolecules 6, 538 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. J.-C. Bogaert and P. Coszach, Macromol. Symp. 153, 287 (2000).

    Article  CAS  Google Scholar 

  8. M. Niaounakis, Biopolymers Reuse, Recycling, and Disposal (Elsevier, New York, 2013).

    Google Scholar 

  9. M. Vert, S. M. Li, G. Spenlehauer, and P. Guerin, J. Mater. Sci.: Mater. Med. 3, 432 (1992).

    Article  CAS  Google Scholar 

  10. R.G. Sinclair, J. Macromol. Sci., Part A: Pure Appl. Chem. 33, 585 (1996).

    Article  Google Scholar 

  11. R. Auras, B. Harte, and S. Selke, Macromol. Biosci. 4, 835 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. A.-C. Albertsson and I. K. Varma, Biomacromolecules 4, 1466 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. K. E. Washington, R. N. Kularatne, V. Karmegam, M. C. Biewer, and M. C. Stefan, WIREs Nanomed. Nanobiotechnol. 9, e1446 (2016).

    Google Scholar 

  14. B. S. Gupta, “Manufacture, types and properties of biotextiles for medical applications,” in Biotextiles as Medicals Implant, Ed. by M. W. King, B. S. Gupta, and R. Guidoin (Woodhead Publ., Series in Textiles, United Kingdom, 2013).

    Google Scholar 

  15. K. J. L. Burg, B. Inskeepm, and T. C. Burg, “Breast tissue engineering: reconstruction implants and three-dimensional tissue test system,” in Principles of Tissue Engineering, Ed. by R. Lanza, R. Langer, and J. Vacanti (Acad. Press; Elsevier Sci. Imprint, New York, 2014).

  16. E. K. Efthimiadou, M. Theodosiou, G. Toniolo, and N. Y. Abu-Thabit, “Stimuli-responsive biopolymer nanocarriers for drug delivery applications,” in Stimuli Responsive Polymeric Nanocarriers for Drug Delivery Applications, Ed. by A. S. Hamdy-Makhlouf and N. Y. Abu-Thabit (Woodhead Publ., United Kingdom, 2018).

    Google Scholar 

  17. A. Kramschuster and L.-S. Turng, “Fabrication of Tissue Engineering Scaffolds,” in Handbook of Biopolymers and Biodegradable Plastics, Ed. by S. Ebnesajjad (Elsevier, Netherland, 2013).

  18. P. I. J. M. Wuisman and T. H. Smit, Eur. Spine J. 15, 133 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. J. C. Middlenton and A. J. Tipton, Biomaterials 2335, 21 (2000).

    Google Scholar 

  20. R. Langer, Acc. Chem. Res. 33, 94 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. A. Merkli, C. Tabatabay, R. Gurny, and J. Heller, Prog. Polym. Sci. 23, 563 (1998).

    Article  CAS  Google Scholar 

  22. O. Dechy-Cabaret, B. Martin-Vaca, and D. Bourissou, Chem. Rev. 104, 6147 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. R. H. Platel, L. M. Hodgson, and C. K. Williams, Polym. Rev. 48, 11 (2008).

    Article  CAS  Google Scholar 

  24. J. Casas, P. V. Persson, T. Iversen, and A. Córdova, Adv. Synth. Catal. 346, 1087 (2004).

    Article  CAS  Google Scholar 

  25. C. Jerome and P. Lecomte, Adv. Drug Delivery Rev. 60, 1056 (2008).

    Article  CAS  Google Scholar 

  26. A. P. Dove, Chem. Commun. 48, 6646 (2008).

    Google Scholar 

  27. M. Oshimura, T. Tang, and A. Takasu, J. Polym. Sci., Part A: Polym. Chem. 49, 1210 (2011)

    Article  CAS  Google Scholar 

  28. F. Suriano, O. Coulembier, J. L. Hedrick, and P. Dubois, Polym. Chem. 2, 528 (2011).

    Article  CAS  Google Scholar 

  29. S. Penczek, M. Cypryk, A. Duda, P. Kubisa, and S. Slomkowski, Prog. Polym. Sci. 32, 247 (2007).

    Article  CAS  Google Scholar 

  30. B.J. O’Keefe, M.A. Hillmyer, and W.B. Tolman, J. Chem. Soc., Dalton Trans. 2001, 2215 (2001).

    Article  Google Scholar 

  31. A. P. Gupta and V. Kumar, Eur. Polym. J. 43, 4053 (2007).

    Article  CAS  Google Scholar 

  32. H. R. Kricheldorf, I.K. Saunders, and A. Stricker, Macromolecules 33, 702 (2000).

    Article  CAS  Google Scholar 

  33. G. Rokicki, Prog. Polym. Sci. 25, 259 (2000).

    Article  CAS  Google Scholar 

  34. H. Yasuda, Prog. Polym. Sci. 25, 573 (2000).

    Article  CAS  Google Scholar 

  35. L. Piao, M. Deng, X. Chen, L. Jiang, and X. Jing, Polymer 44, 2331 (2003).

    Article  CAS  Google Scholar 

  36. F. Yu and R. Zhuo, Polym. J. 36, 28 (2004).

    Article  CAS  Google Scholar 

  37. Ch. Wang, H. Li, and X. Zhao, Biomaterials 25, 5797 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. L. Liu, Z. Wei, and M. Qi, Chin. Chem. Lett. 18, 744 (2007).

    Article  CAS  Google Scholar 

  39. F. He, Y. Wang, G. Liu, H. Jia, J. Feng, and R. Zhuo, Polymer 49, 1185 (2008).

    Article  CAS  Google Scholar 

  40. Y. Wang, L.P. Wang, and L. Shen, Chin. J. Polym. Sci. 28, 509 (2010).

    Article  CAS  Google Scholar 

  41. S. Agarwal, C. Mast, K. Dehnicke, and A. Greiner, Macromol. Rapid Commun. 21, 195 (2000).

    Article  CAS  Google Scholar 

  42. C. Tsutsumi and H. Yasuda, J. Polym. Sci., Part A: Polym. Chem. 39, 3916 (2001).

    Article  CAS  Google Scholar 

  43. J. Ling and Z. Q. Shen, Macromol. Chem. Phys. 203, 735 (2002).

    Article  CAS  Google Scholar 

  44. C. Yu, L. Zhang, and Z. Q. Shen, J. Mol. Catal. A: Chem. 212, 365 (2004).

    Article  CAS  Google Scholar 

  45. J. Ling, Y. Dai, Y. Zhu, W. Sun, and Z. Shen, J. Polym. Sci., Part A: Polym. Chem. 48, 3807 (2010).

    Article  CAS  Google Scholar 

  46. Z. Shen, G. Zhu, and J. Ling, Chin. J. Chem. 20, 1369 (2002).

    Article  CAS  Google Scholar 

  47. D. M. Lyubov, A. O. Tolpygin, and A. A. Trifonov, Coord. Chem. Rev. 392, 83 (2019).

    Article  CAS  Google Scholar 

  48. Y. Nakayama, H. Yasuda, K. Yamamoto, C. Tsutsumi, R. Jerome, and P. Lecomte, React. Funct. Polym. 63, 95 (2005).

    Article  CAS  Google Scholar 

  49. M. Patel, M. Kapadia, and J. Joshi, Eur. Polym. J. 45, 426 (2009).

    Article  CAS  Google Scholar 

  50. M. Patel, M. Kapadia, and J. Joshi, J. Polym. Res. 16, 755 (2009).

    Article  CAS  Google Scholar 

  51. P. Kapoor, N. Fahmi, and R.-V. Singh, Spectrochim. Acta, Part A 83, 74 (2011).

    Article  CAS  Google Scholar 

  52. J.-M. Contreras, D. Medina, F. Lopez-Carrasquero, and R.-R. Contreras, J. Polym. Res. 20, 244 (2013).

    Article  Google Scholar 

  53. M. Monsalve, J. Contreras, E. Cardozo, and R.-R. Contreras, Av. Quim. 10, 129 (2015).

  54. D. Medina, J.-M. Contreras, F. Lopez-Carrasquero, E. Cardozo, and R.-R. Contreras, Polym. Bull. 75, 1253 (2018).

    Article  CAS  Google Scholar 

  55. J. Contreras, D. Medina, F. Lopez-Carrasquero, and R.-R Contreras, Curr. Appl. Polym. Sci. 02, 3 (2019).

    Google Scholar 

  56. J.-M. Contreras-Ramírez and M. Monsalve, J. Macromol. Sci., Part A; Pure Appl. Chem. 56(12), 1114 (2019).

    Article  Google Scholar 

  57. M. Monsalve and J. Contreras, Revista Cientifica UNET 26, 67 (2014).

    Google Scholar 

  58. G. Rokicki, A. Piotrowska, and P. Pawłowski, Polym. J. 35, 133 (2003).

    Article  CAS  Google Scholar 

  59. S. Agarwal and M. Puchner, Eur. Polym. J. 38, 2365 (2002).

    Article  CAS  Google Scholar 

  60. H. R. Kricheldorf, A. Stricker, and Z. Gomurashvili, Macromol. Chem. Phys. 202, 413 (2001).

    Article  CAS  Google Scholar 

  61. L.-F. Zhang, Y. Wang, P. Wang, and L.-J. Shen, Sci. China: Chem. 53, 599 (2010).

    Article  CAS  Google Scholar 

  62. A. Kowalski, A. Duda, and S. Penczek, Macromolecules 33, 7359 (2000).

    Article  CAS  Google Scholar 

  63. R.-F. Storey and J.-W Sherman, Macromolecules 35, 1504 (2002).

    Article  CAS  Google Scholar 

  64. M. Hesse, H. Meier, and B. Zeeh, Métodos Espectroscópicos en Química Orgánica (Editorial SINTESIS, Quinta edición, Madrid, 1995) [in Spanish].

  65. J. Ling, Z. Shen, and Q. Huang, Macromolecules 34, 7613 (2001).

    Article  CAS  Google Scholar 

  66. P. Dubois, C. Jacobs, R. Jérome, and P.Teyssie, Macromolecules 24, 2226 (1991).

    Article  Google Scholar 

  67. P. Vanhoorne, P. Dubois, R. Jerome, and P. Teyssie, Macromolecules 25, 37 (1992).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Consejo de Desarrollo Científico, Humanístico, Tecnológico y de las Artes de la Universidad de Los Andes-Mérida-Venezuela.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Contreras-Ramírez.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Contreras-Ramírez, J.M., Monsalve, M. Ring-Opening Polymerization of 2,2-Dimethyltrimethylene Carbonate Using Samarium Acetate(III) as an Initiator. Polym. Sci. Ser. B 63, 94–102 (2021). https://doi.org/10.1134/S1560090421020044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560090421020044

Navigation