Skip to main content
Log in

Synthesis and Properties of Polymerization-Filled Composites Based on Polypropylene and Single-Wall Carbon Nanotubes

  • COMPOSITES
  • Published:
Polymer Science, Series B Aims and scope Submit manuscript

Abstract

Composites based on polypropylene and single-wall carbon oxygen-containing nanotubes with a specific surface area of 360 and 500 m2/g are synthesized in the medium of liquid propylene using the catalytic system rac-Me2Si(2-Me-4-PhInd)2ZrCl2/МАО. Optimum polymerization conditions ensuring a fairly high rate of the process are determined, and the composites with the filler content in the range from 0.3 to 13.0 wt % are obtained. It is shown that the presence of functional groups enhances the filler agglomeration tendency during composite formation. Effects of the type of carbon nanofiller on the thermal stability, thermo-oxidative resistance, and thermal and electrophysical characteristics of the composites are studied. It is found that the filler inhibits the processes of oxidation and destruction of polypropylene crystallites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. K. Hu, D. Kulkarni Dhaval, I. Choi, and V. V. Tsukruk, Prog. Polym. Sci. 39, 1934 (2014).

    Article  CAS  Google Scholar 

  2. J. Du and H. M. Cheng, Macromol. Chem. Phys. 213, 1060 (2012).

    Article  CAS  Google Scholar 

  3. L. S. Eitan, Dekker Encyclopedia of Nanoscience and Nanotechnology (Schadler Rensselaer Polytech. Inst., New York, 2017).

    Google Scholar 

  4. Polymer-Carbon Nanotube Composites Preparation, Properties and Applications, Ed. by T. McNally and P. Potschke (Woodhead Publ. Ltd., Cambridge, 2011).

    Google Scholar 

  5. S. Alwarappan and A. Kumar, Graphene-Based Materials: Science and Technology (CRC Press, Boca Raton, 2013).

    Book  Google Scholar 

  6. Z. Ghorannevis, T. Kato, T. Kaneko, and R. Hatakeyama, Jpn. J. Appl. Phys. 49, BA01 (2010).

    Article  Google Scholar 

  7. T. Nozaki and K. Okazaki, Plasma Processess Polym. 5, 300 (2008).

    Article  Google Scholar 

  8. O. E. Glukhova, N. I. Sinitsyn, G. V. Torgashov, O. A. Terent’ev, and Z. I. Buyanova, Elektromagn. Volny Elektron. Sist. 12 (10), 57 (2007).

    Google Scholar 

  9. A. V. Krestinin, N. N. Dremova, E. I. Knerel’man, L. N. Blinova, V. G. Zhigalina, and N. A. Kiselev, Nanotechnol. Russ. 10, 537 (2015).

    Article  CAS  Google Scholar 

  10. P. M. Nedorezova, V. G. Shevchenko, A. N. Shchegolikhin, V. I. Tsvetkova, and Yu. M. Korolev, Polym. Sci., Ser. A 46, 242 (2004).

    Google Scholar 

  11. S. V. Polschikov, P. M. Nedorezova, A. N. Klyamkina, A. A. Kovalchuk, A. M. Aladyshev, A. N. Shchegolikhin, V. G. Shevchenko, and V. E. Muradyan, J. Appl. Polym. Sci. 127, 904 (2013).

    Article  CAS  Google Scholar 

  12. W. Spaleck, F. Kuber, A. Winter, J. Rohrmann, B. Bochmann, M. Antberg, V. Dolle, and E. F. Paulus, Organometallics 13, 954 (1994).

    Article  CAS  Google Scholar 

  13. W. Kaminsky, A. Andreas Funck, Macromol. Symp. 260, 1 (2007).

    Article  CAS  Google Scholar 

  14. Yu. V. Kissin, Isospecific Polymerization of Olefins (Springer-Verlag, New York; Berlin; Heidelberg; Tokyo, 1985).

    Book  Google Scholar 

  15. Yu. A. Shlyapnikov, S. G. Kiryushkin, and A. P. Mar’in, Antioxidative Stabilization of Polymers (Khimiya, Moscow, 1988) [in Russian].

    Google Scholar 

  16. O. A. D’yakonova, D. S. Kalenov, and Yu. N. Kazantsev, Zh. Radioelektron., No. 10, 1684 (2016).

  17. Yu. K. Godovsky, Thermal Physics of Polymers (Khimiya, Moscow, 1982) [in Russian].

    Google Scholar 

  18. S. Polschikov, P. Nedorezova, O. Palaznik, A. Klyamkina, D. Shashkin, A. Gorenberg, V. Krasheninnikov, V. Shevchenko, and A. Arbuzov, Polym. Eng. Sci. 58, 1461 (2018).

    Article  CAS  Google Scholar 

  19. R. G. Alamo, J. A. Blanco, P. K. Agarwal, and J. C. Randall, Macromolecules 36, 1559 (2003).

    Article  CAS  Google Scholar 

  20. T. V. Monakhova, P. M. Nedorezova, V. I. Tsvetkova, and Y. A. Shlyapnikov, Polym. Sci., Ser. B 46, 113 (2004).

    Google Scholar 

  21. Ya. P. Kapachauskene, R. P. Yurevichene, and Yu. A. Shlyapnikov, Kinet. Katal. 8, 212 (1967).

    Google Scholar 

  22. T. V. Monakhova, P. M. Nedorezova, T. A. Bogaevskaya, V. I. Tsvetkova, and Yu. A. Shlyapnikov, Vysokomol. Soedin., Ser. A 30, 2415 (1988).

    CAS  Google Scholar 

  23. A. L. Margolin, T. V. Monakhova, P. M. Nedorezova, A. N. Klyamkina, and S. V. Polschikov, Polym. Degrad. Stab. 156, 59 (2018).

    Article  CAS  Google Scholar 

  24. S. V. Polschikov, P. M. Nedorezova, T. V. Monakhova, A. N. Klyamkina, A. N. Shchegolikhin, V. G. Krasheninnikov, V. E. Muradyan, A. A. Popov, and A. L. Margolin, Polym. Sci., Ser. B 55, 286 (2013).

    Article  CAS  Google Scholar 

  25. A. A. Koval’chuk, V. G. Shevchenko, A. N. Shegolikhin, P. M. Nedorezova, A. N. Klyamkina, and A. M. Aladyshev, Macromolecules 41, 7536 (2008).

    Article  Google Scholar 

  26. T. V. Monakhova, P. M. Nedorezova, S. V. Pol’shchikov, A. A. Popov, and A. L. Margolin, Russ. J. Phys. Chem. B 8, 874 (2014).

    Article  CAS  Google Scholar 

  27. N. M. Emanuel’ and A. L. Buchachenko, Physical Chemistry of Molecular Degradation and Stabilization of Polymers (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  28. M. A. Martynov and K. A. Valegzhanina, Vysokomol. Soedin., Ser. A 8, 376 (1966).

    CAS  Google Scholar 

  29. L. S. Shibryaeva, O. V. Shatalova, A. V. Krivandin, O. B. Petrov, N. N. Korzh, and A. A. Popov, Polym. Sci., Ser. A 45, 244 (2003).

    Google Scholar 

  30. A. V. Zhuk, N. N. Knunyants, V. G. Oshmyan, V. A. Topolkaraev, and A. A. Berlin, J. Mater. Sci. 28, 4995 (1993).

    Article  Google Scholar 

  31. B. Krause, P. Potschke, E. Ilin, and M. Predtechenskiy, Polymer 98, 45 (2016).

    Article  CAS  Google Scholar 

  32. Q. He, T. Yuan, X. Zhang, X. Yan, J. Guo, D. Ding, A. Khan Mojammel, D. P. Young, A. Khasanov, Z. Luo, J. Liu, T. D. Shen, X. Liu, S. Wei, and Z. Guo, J. Phys. Chem. C 118, 24784 (2014).

    Article  CAS  Google Scholar 

  33. C.-L. Huang, C.-W. Lou, C.-F. Liu, C.-H. Huang, X.‑M. Song, and J.-H. Lin, Appl. Sci. 5, 1196 (2015).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to A.Ya. Gorenberg for SEM analyses of the samples and T.M. Medintseva for the mechanical testing of the composites.

Funding

This work was carried out within the framework of State Assignment no. 0082-2019-0004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. Nedorezova.

Additional information

Translated by T. Soboleva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palaznik, O.M., Nedorezova, P.M., Shevchenko, V.G. et al. Synthesis and Properties of Polymerization-Filled Composites Based on Polypropylene and Single-Wall Carbon Nanotubes. Polym. Sci. Ser. B 63, 161–174 (2021). https://doi.org/10.1134/S1560090421020093

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560090421020093

Navigation