Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Opinion Article

Dual Modulators of p53 and Cyclin D in ER Alpha Signaling by Albumin Nanovectors Bearing Zinc Chaperones for ER-positive Breast Cancer Therapy

Author(s): Shyam Sundar P, Podila Naresh, Justin A, Ashish Wadhwani, Suresh Kumar M and Selvaraj Jubie*

Volume 21, Issue 7, 2021

Published on: 24 November, 2020

Page: [792 - 802] Pages: 11

DOI: 10.2174/1389557520999201124212347

Price: $65

Abstract

The inherited mutations and underexpression of BRCA1 in sporadic breast cancers resulting in the loss or functional inactivation of BRCA1 may contribute to a high risk of breast cancer. Recent researchers have identified small molecules (BRCA1 mimetics) that fit into a BRCA1 binding pocket within Estrogen Receptor alpha (ERα), mimic the ability of BRCA1 to inhibit ERα activity, and overcome antiestrogen resistance. Studies indicate that most of the BRCA1 breast cancer cases are associated with p53 mutations. It indicates that there is a potential connection between BRCA1 and p53. Most p53 mutations are missense point mutations that occur in the DNA-binding domain. Structural studies have demonstrated that mutant p53 core domain misfolding, especially p53-R175H, is reversible. Mutant p53 reactivation with a new class of zinc metallochaperones (ZMC) restores WT p53 structure and functions by restoring Zn2+ to Zn2+ deficient mutant p53. Considering the role of WT BRCA1 and reactivation of p53 in tumor cells, our hypothesis is to target both tumor suppressor proteins by a novel biomolecule (ZMC). Since both proteins are present in the same cell and are functionally inactive, this state may be a novel efficacious therapeutic regime for breast cancer therapy. In addition, we propose to use Albumin Nanovector (ANV) formulation for target drug release.

Keywords: Breast cancer, BRCA1, ERα, ZMC, albumin nano vectors, p53.

Graphical Abstract
[1]
WHO. Breast cancer: Prevention and control,. http://www.who.int/cancer/detection/breastcancer/en/
[3]
Clarke, M. Meta-analyses of adjuvant therapies for women with early breast cancer: The Early Breast Cancer Trialists’ Collaborative Group overview. Ann. Oncol., 2006, 17(Suppl. 10), x59-x62.
[http://dx.doi.org/10.1093/annonc/mdl238] [PMID: 17018753]
[4]
Coombes, R.C.; Gibson, L.; Hall, E.; Emson, M.; Bliss, J. Aromatase inhibitors as adjuvant therapies in patients with breast cancer. J. Steroid Biochem. Mol. Biol., 2003, 86(3-5), 309-311.
[http://dx.doi.org/10.1016/S0960-0760(03)00372-8] [PMID: 14623526]
[5]
Johnston, S. Fulvestrant and the sequential endocrine cascade for advanced breast cancer. Br. J. Cancer, 2004, 90(S1)(Suppl. 1), S15-S18.
[http://dx.doi.org/10.1038/sj.bjc.6601632] [PMID: 15094760]
[6]
ElShamy, W.M.; Livingston, D.M. Identification of BRCA1-IRIS, a BRCA1 locus product. Nat. Cell Biol., 2004, 6(10), 954-967.
[http://dx.doi.org/10.1038/ncb1171] [PMID: 15448696]
[7]
Wilson, C.A.; Payton, M.N.; Elliott, G.S.; Buaas, F.W.; Cajulis, E.E.; Grosshans, D.; Ramos, L.; Reese, D.M.; Slamon, D.J.; Calzone, F.J. Differential subcellular localization, expression and biological toxicity of BRCA1 and the splice variant BRCA1-D11b. Oncogene, 1997, 14(1), 1-16.
[8]
Deng, C-X. BRCA1: Cell cycle checkpoint, genetic instability, DNA damage response and cancer evolution. Nucleic Acids Res., 2006, 34(5), 1416-1426.
[http://dx.doi.org/10.1093/nar/gkl010] [PMID: 16522651]
[9]
Yarden, R.I.; Papa, M.Z. BRCA1 at the crossroad of multiple cellular pathways: Approaches for therapeutic interventions. Mol. Cancer Ther., 2006, 5(6), 1396-1404.
[http://dx.doi.org/10.1158/1535-7163.MCT-05-0471] [PMID: 16818497]
[10]
Dine, J.; Deng, C-X. Mouse models of BRCA1 and their application to breast cancer research. Cancer Metastasis Rev., 2013, 32(1-2), 25-37.
[http://dx.doi.org/10.1007/s10555-012-9403-7] [PMID: 23093327]
[11]
Buckley, N.E.; Mullan, P.B. BRCA1- conductor of the breast stem cell orchestra: The role of BRCA1 in mammary gland development and identification of cell of origin of BRCA1 mutant breast cancer. Stem. Cell Rev. Rep., 2012, 8(3), 982-993.
[http://dx.doi.org/10.1007/s12015-012-9354-y] [PMID: 22426855]
[12]
Deng, C-X.; Wang, R.H. Roles of BRCA1 in DNA damage repair: A link between development and cancer. Hum. Mol. Genet., 2003, 12(Spec No 1), R113-R123.
[http://dx.doi.org/10.1093/hmg/ddg082] [PMID: 12668603]
[13]
Cao, L.; Li, W.; Kim, S.; Brodie, S.G.; Deng, C.X. Senescence, aging, and malignant transformation mediated by p53 in mice lacking the Brca1 full-length isoform. Genes Dev., 2003, 17(2), 201-213.
[http://dx.doi.org/10.1101/gad.1050003] [PMID: 12533509]
[14]
Miki, T.; Bottaro, D.P.; Fleming, T.P.; Smith, C.L.; Burgess, W.H.; Chan, A.M.; Aaronson, S.A. Determination of ligand-binding specificity by alternative splicing: Two distinct growth factor receptors encoded by a single gene. Proc. Natl. Acad. Sci. USA, 1992, 89(1), 246-250.
[http://dx.doi.org/10.1073/pnas.89.1.246] [PMID: 1309608]
[15]
Bishop, D.T. Breast and ovarian cancer incidence in BRCA I -mutation carriers. Am. J. Hum. Genet., 1995, 56, 265-271.
[16]
Struewing, J.P.; Hartge, P.; Wacholder, S.; Baker, S.M.; Berlin, M. cAdams, M.; Timmerman, M.M.; Brody, L.C.; Tucker, M.A. The risk of cancer associated with specific mutations of BRCA1 and BRCA2 among Ashkenazi Jews. N. Engl. J. Med., 1997, 336(20), 1401-1408.
[http://dx.doi.org/10.1056/NEJM199705153362001] [PMID: 9145676]
[17]
Ford, D.; Easton, D.F.; Stratton, M.; Narod, S.; Goldgar, D.; Devilee, P.; Bishop, D.T.; Weber, B.; Lenoir, G.; Chang-Claude, J.; Sobol, H.; Teare, M.D.; Struewing, J.; Arason, A.; Scherneck, S.; Peto, J.; Rebbeck, T.R.; Tonin, P.; Neuhausen, S.; Barkardottir, R.; Eyfjord, J.; Lynch, H.; Ponder, B.A.; Gayther, S.A.; Zelada-Hedman, M. The Breast Cancer Linkage Consortium. Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. Am. J. Hum. Genet., 1998, 62(3), 676-689.
[http://dx.doi.org/10.1086/301749] [PMID: 9497246]
[18]
Miki, Y.; Swensen, J.; Shattuck-Eidens, D.; Futreal, P.A.; Harshman, K.; Tavtigian, S.; Liu, Q.; Cochran, C.; Bennett, L.M.; Ding, W. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science, 1994, 266(5182), 66-71.
[http://dx.doi.org/10.1126/science.7545954] [PMID: 7545954]
[19]
Lane, T.F.; Deng, C.; Elson, A.; Leder, P. Expression of BRCAl is associated with terminal differentiation of ectodermally and mesodermally derived tissues in mice. Genes Dev., 1995, 9(21), 2712-2722.
[20]
Levine, A.J.; Wu, M.C.; Chang, A.; Silver, A.; Attiyeh, E.F.; Lin, J.; Epstein, C.B. The spectrum of mutations at the p53 locus. Evidence for tissue-specific mutagenesis, selection of mutant alleles, and a “gain of function” phenotype. Ann. N. Y. Acad. Sci., 1995, 768(1), 111-128.
[http://dx.doi.org/10.1111/j.1749-6632.1995.tb12115.x] [PMID: 8526340]
[21]
Olivier, M.; Eeles, R.; Hollstein, M.; Khan, M.A.; Harris, C.C.; Hainaut, P. The IARC TP53 database: New online mutation analysis and recommendations to users. Hum. Mutat., 2002, 19(6), 607-614.
[http://dx.doi.org/10.1002/humu.10081] [PMID: 12007217]
[22]
Selivanova, G.; Wiman, K.G. Reactivation of mutant p53: Molecular mechanisms and therapeutic potential. Oncogene, 2007, 26(15), 2243-2254.
[http://dx.doi.org/10.1038/sj.onc.1210295] [PMID: 17401433]
[23]
Foster, B.A.; Coffey, H.A.; Morin, M.J.; Rastinejad, F. Pharmacological rescue of mutant p53 conformation and function. Science, 1999, 286(5449), 2507-2510.
[http://dx.doi.org/10.1126/science.286.5449.2507] [PMID: 10617466]
[24]
Brown, C.J.; Lain, S.; Verma, C.S.; Fersht, A.R.; Lane, D.P. Awakening guardian angels: Drugging the p53 pathway. Nat. Rev. Cancer, 2009, 9(12), 862-873.
[http://dx.doi.org/10.1038/nrc2763] [PMID: 19935675]
[25]
Freed-Pastor, W.A.; Prives, C. Mutant p53: One name, many proteins. Genes Dev., 2012, 26(12), 1268-1286.
[http://dx.doi.org/10.1101/gad.190678.112] [PMID: 22713868]
[26]
Butler, J.S.; Loh, S.N. Structure, function, and aggregation of the zinc-free form of the p53 DNA binding domain. Biochemistry, 2003, 42(8), 2396-2403.
[http://dx.doi.org/10.1021/bi026635n] [PMID: 12600206]
[27]
Yu, X.; Blanden, A.R.; Narayanan, S.; Jayakumar, L.; Lubin, D.; Augeri, D.; Kimball, S.D.; Loh, S.N.; Carpizo, D.R. Small molecule restoration of wildtype structure and function of mutant p53 using a novel zinc-metallochaperone based mechanism. Oncotarget, 2014, 5(19), 8879-8892.
[http://dx.doi.org/10.18632/oncotarget.2432] [PMID: 25294809]
[28]
Parodi, A.; Miao, J.; Soond, S.M.; Rudzińska, M.; Zamyatnin, A.A., Jr Albumin nanovectors in cancer therapy and imaging. Biomolecules, 2019, 9(6)E218
[http://dx.doi.org/10.3390/biom9060218] [PMID: 31195727]
[29]
Yu, X.; Narayanan, S.; Vazquez, A.; Carpizo, D.R. Small molecule compounds targeting the p53 pathway: Are we finally making progress? Apoptosis, 2014, 19(7), 1055-1068.
[http://dx.doi.org/10.1007/s10495-014-0990-3] [PMID: 24756955]
[30]
Lynch, B.J.; Holden, J.A.; Buys, S.S.; Neuhausen, S.L.; Gaffney, D.K. Pathobiologic characteristics of hereditary breast cancer. Hum. Pathol., 1998, 29(10), 1140-1144.
[http://dx.doi.org/10.1016/S0046-8177(98)90427-0] [PMID: 9781655]
[31]
Palacios, J.; Honrado, E.; Osorio, A.; Cazorla, A.; Sarrio, D.; Barroso, A.; Rodrıguez, S.; Cigudosa, J.C.; Diez, O.; Alonso, C. Immunohistochemical characteristics defined by tissue microarray of hereditary breast cancer not attributable to BRCA1 or BRCA2 mutations: Differences from breast carcinomas arising in BRCA1 and BRCA2 mutation carriers. Clin. Cancer Res., 2003, 9(10), 3606-3614.
[32]
Eerola, H.; Heikkilä, P.; Tamminen, A.; Aittomäki, K.; Blomqvist, C.; Nevanlinna, H. Histopathological features of breast tumours in BRCA1, BRCA2 and mutation-negative breast cancer families. Breast Cancer Res., 2005, 7(1), R93-R100.
[http://dx.doi.org/10.1186/bcr953] [PMID: 15642173]
[33]
Lakhani, S.R.; Van De Vijver, M.J.; Jacquemier, J.; Anderson, T.J.; Osin, P.P.; McGuffog, L.; Easton, D.F. The pathology of familial breast cancer: predictive value of immunohistochemical markers estrogen receptor, progesterone receptor, HER-2, and p53 in patients with mutations in BRCA1 and BRCA2. J. Clin. Oncol., 2002, 20(9), 2310-2318.
[http://dx.doi.org/10.1200/JCO.2002.09.023] [PMID: 11981002]
[34]
Crook, T.; Brooks, L.A.; Crossland, S.; Osin, P.; Barker, K.T.; Waller, J.; Philp, E.; Smith, P.D.; Yulug, I.; Peto, J.; Parker, G.; Allday, M.J.; Crompton, M.R.; Gusterson, B.A. p53 mutation with frequent novel condons but not a mutator phenotype in BRCA1- and BRCA2-associated breast tumours. Oncogene, 1998, 17(13), 1681-1689.
[http://dx.doi.org/10.1038/sj.onc.1202106] [PMID: 9796697]
[35]
Phillips, K-A.; Nichol, K.; Ozcelik, H.; Knight, J.; Done, S.J.; Goodwin, P.J.; Andrulis, I.L. Frequency of p53 mutations in breast carcinomas from Ashkenazi Jewish carriers of BRCA1 mutations. J. Natl. Cancer Inst., 1999, 91(5), 469-473.
[http://dx.doi.org/10.1093/jnci/91.5.469] [PMID: 10070948]
[36]
Zhang, H.; Somasundaram, K.; Peng, Y.; Tian, H.; Zhang, H.; Bi, D.; Weber, B.L.; El-Deiry, W.S. BRCA1 physically associates with p53 and stimulates its transcriptional activity. Oncogene, 1998, 16(13), 1713-1721.
[http://dx.doi.org/10.1038/sj.onc.1201932] [PMID: 9582019]
[37]
Wang, C.; Fan, S.; Li, Z.; Fu, M.; Rao, M.; Ma, Y.; Lisanti, M.P.; Albanese, C.; Katzenellenbogen, B.S.; Kushner, P.J.; Weber, B.; Rosen, E.M.; Pestell, R.G. Cyclin D1 antagonizes BRCA1 repression of estrogen receptor alpha activity. Cancer Res., 2005, 65(15), 6557-6567.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-0486] [PMID: 16061635]
[38]
Nathan, S.; Ma, Y.; Tomita, Y.A.; De Oliveira, E.; Brown, M.L.; Rosen, E.M. BRCA1-mimetic compound NSC35446.HCl inhibits IKKB expression by reducing estrogen receptor-α occupancy in the IKKB promoter and inhibits NF-κB activity in antiestrogen-resistant human breast cancer cells. Breast Cancer Res. Treat., 2017, 166(3), 681-693.
[http://dx.doi.org/10.1007/s10549-017-4442-y] [PMID: 28808806]
[39]
Fan, S.; Ma, Y.X.; Wang, C.; Yuan, R.Q.; Meng, Q.; Wang, J-A.; Erdos, M.; Goldberg, I.D.; Webb, P.; Kushner, P.J.; Pestell, R.G.; Rosen, E.M. Role of direct interaction in BRCA1 inhibition of estrogen receptor activity. Oncogene, 2001, 20(1), 77-87.
[http://dx.doi.org/10.1038/sj.onc.1204073] [PMID: 11244506]
[40]
Kawai, H.; Li, H.; Chun, P.; Avraham, S.; Avraham, H.K. Direct interaction between BRCA1 and the estrogen receptor regulates vascular endothelial growth factor (VEGF) transcription and secretion in breast cancer cells. Oncogene, 2002, 21(50), 7730-7739.
[http://dx.doi.org/10.1038/sj.onc.1205971] [PMID: 12400015]
[41]
Fan, S.; Ma, Y.X.; Wang, C.; Yuan, R-Q.; Meng, Q.; Wang, J-A.; Erdos, M.; Goldberg, I.D.; Webb, P.; Kushner, P.J. P300 modulates the BRCA1 inhibition of estrogen receptor activity. Cancer Res., 2002, 62(1), 141-151.
[42]
Dizin, E.; Irminger-Finger, I. Negative feedback loop of BRCA1-BARD1 ubiquitin ligase on estrogen receptor alpha stability and activity antagonized by cancer-associated isoform of BARD1. Int. J. Biochem. Cell Biol., 2010, 42(5), 693-700.
[http://dx.doi.org/10.1016/j.biocel.2009.12.025] [PMID: 20060929]
[43]
Ma, Y.; Fan, S.; Hu, C.; Meng, Q.; Fuqua, S.A.; Pestell, R.G.; Tomita, Y.A.; Rosen, E.M. BRCA1 regulates acetylation and ubiquitination of estrogen receptor-α. Mol. Endocrinol., 2010, 24(1), 76-90.
[http://dx.doi.org/10.1210/me.2009-0218] [PMID: 19887647]
[44]
Ma, Y.X.; Tomita, Y.; Fan, S.; Wu, K.; Tong, Y.; Zhao, Z.; Song, L-N.; Goldberg, I.D.; Rosen, E.M. Structural determinants of the BRCA1: Estrogen receptor interaction. Oncogene, 2005, 24(11), 1831-1846.
[http://dx.doi.org/10.1038/sj.onc.1208190] [PMID: 15674350]
[45]
Ma, Y.; Hu, C.; Riegel, A.T.; Fan, S.; Rosen, E.M. Growth factor signaling pathways modulate BRCA1 repression of estrogen receptor-alpha activity. Mol. Endocrinol., 2007, 21(8), 1905-1923.
[http://dx.doi.org/10.1210/me.2006-0397] [PMID: 17505062]
[46]
Jung, Y-S.; Chun, H-Y.; Yoon, M-H.; Park, B-J. Elevated estrogen receptor-α in VHL-deficient condition induces microtubule organizing center amplification via disruption of BRCA1/Rad51 interaction. Neoplasia, 2014, 16(12), 1070-1081.
[http://dx.doi.org/10.1016/j.neo.2014.09.013] [PMID: 25499220]
[47]
Stewart, M.D.; Duncan, E.D.; Coronado, E.; DaRosa, P.A.; Pruneda, J.N.; Brzovic, P.S.; Klevit, R.E. Tuning BRCA1 and BARD1 activity to investigate RING ubiquitin ligase mechanisms. Protein Sci., 2017, 26(3), 475-483.
[http://dx.doi.org/10.1002/pro.3091] [PMID: 27977889]
[48]
Zheng, L.; Annab, L.A.; Afshari, C.A.; Lee, W-H.; Boyer, T.G. BRCA1 mediates ligand-independent transcriptional repression of the estrogen receptor. Proc. Natl. Acad. Sci. USA, 2001, 98(17), 9587-9592.
[http://dx.doi.org/10.1073/pnas.171174298] [PMID: 11493692]
[49]
Dong, Y.; Hakimi, M-A.; Chen, X.; Kumaraswamy, E.; Cooch, N.S.; Godwin, A.K.; Shiekhattar, R. Regulation of BRCC, a holoenzyme complex containing BRCA1 and BRCA2, by a signalosome-like subunit and its role in DNA repair. Mol. Cell, 2003, 12(5), 1087-1099.
[http://dx.doi.org/10.1016/S1097-2765(03)00424-6] [PMID: 14636569]
[50]
Abramovitch, S.; Werner, H. Functional and physical interactions between BRCA1 and p53 in transcriptional regulation of the IGF-IR gene. Horm. Metab. Res., 2003, 35(11-12), 758-762.
[http://dx.doi.org/10.1055/s-2004-814154] [PMID: 14710355]
[51]
Ouchi, T.; Monteiro, A.N.A.; August, A.; Aaronson, S.A.; Hanafusa, H. BRCA1 regulates p53-dependent gene expression. Proc. Natl. Acad. Sci. USA, 1998, 95(5), 2302-2306.
[http://dx.doi.org/10.1073/pnas.95.5.2302] [PMID: 9482880]
[52]
Chai, Y.L.; Cui, J.; Shao, N.; Shyam, E.; Reddy, P.; Rao, V.N. The second BRCT domain of BRCA1 proteins interacts with p53 and stimulates transcription from the p21WAF1/CIP1 promoter. Oncogene, 1999, 18(1), 263-268.
[http://dx.doi.org/10.1038/sj.onc.1202323] [PMID: 9926942]
[53]
Jin, S.; Gao, H.; Mazzacurati, L.; Wang, Y.; Fan, W.; Chen, Q.; Yu, W.; Wang, M.; Zhu, X.; Zhang, C.; Zhan, Q. BRCA1 interaction of centrosomal protein Nlp is required for successful mitotic progression. J. Biol. Chem., 2009, 284(34), 22970-22977.
[http://dx.doi.org/10.1074/jbc.M109.009134] [PMID: 19509300]
[54]
Jiang, J.; Yang, E.S.; Jiang, G.; Nowsheen, S.; Wang, H.; Wang, T.; Wang, Y.; Billheimer, D.; Chakravarthy, A.B.; Brown, M.; Haffty, B.; Xia, F. p53-dependent BRCA1 nuclear export controls cellular susceptibility to DNA damage. Cancer Res., 2011, 71(16), 5546-5557.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-3423] [PMID: 21742769]
[55]
Rasti, M.; Azimi, T. TP53 Binding to BRCA1 and RAD51 in MCF7 and MDA-MB-468 breast cancer cell lines. In vivo and In vitro. 2015, 7(2), 4..
[56]
Buck, M. A novel domain of BRCA1 interacts with p53 in breast cancer cells. Cancer Lett., 2008, 268(1), 137-145.
[http://dx.doi.org/10.1016/j.canlet.2008.03.061] [PMID: 18501503]
[57]
Xu, P.; Shi, X.; Zhang, X.; Liu, Q.; Xie, Y.; Hong, Y.; Li, J.; Peng, M.; Liu, X.; Xu, G. Overexpression of BRCA1 in neural stem cells enhances cell survival and functional recovery after transplantation into experimental ischemic stroke. Oxid. Med. Cell. Longev., 2019.20198739730
[http://dx.doi.org/10.1155/2019/8739730] [PMID: 31073355]
[58]
Chen, Y.; Borowicz, S.; Fackenthal, J.; Collart, F.R.; Myatt, E.; Moy, S.; Babnigg, G.; Wilton, R.; Boernke, W.E.; Schiffer, M.; Stevens, F.J.; Olopade, O.I. Primary structure-based function characterization of BRCT domain replicates in BRCA1. Biochem. Biophys. Res. Commun., 2006, 345(1), 188-196.
[http://dx.doi.org/10.1016/j.bbrc.2006.03.239] [PMID: 16677609]
[59]
Quaresima, B.; Faniello, M.C.; Baudi, F.; Crugliano, T.; Di Sanzo, M.; Cuda, G.; Costanzo, F.; Venuta, S. Missense mutations of BRCA1 gene affect the binding with p53 both in vitro and in vivo. Oncol. Rep., 2006, 16(4), 811-815.
[http://dx.doi.org/10.3892/or.16.4.811] [PMID: 16969499]
[60]
Mark, W-Y.; Liao, J.C.C.; Lu, Y.; Ayed, A.; Laister, R.; Szymczyna, B.; Chakrabartty, A.; Arrowsmith, C.H. Characterization of segments from the central region of BRCA1: An intrinsically disordered scaffold for multiple protein-protein and protein-DNA interactions? J. Mol. Biol., 2005, 345(2), 275-287.
[http://dx.doi.org/10.1016/j.jmb.2004.10.045] [PMID: 15571721]
[61]
Méplan, C.; Richard, M-J.; Hainaut, P. Metalloregulation of the tumor suppressor protein p53: Zinc mediates the renaturation of p53 after exposure to metal chelators in vitro and in intact cells. Oncogene, 2000, 19(46), 5227-5236.
[http://dx.doi.org/10.1038/sj.onc.1203907] [PMID: 11077439]
[62]
Puca, R.; Nardinocchi, L.; Porru, M.; Simon, A.J.; Rechavi, G.; Leonetti, C.; Givol, D.; D’Orazi, G. Restoring p53 active conformation by zinc increases the response of mutant p53 tumor cells to anticancer drugs. Cell Cycle, 2011, 10(10), 1679-1689.
[http://dx.doi.org/10.4161/cc.10.10.15642] [PMID: 21508668]
[63]
Kogan, S.; Carpizo, D.R. Zinc Metallochaperones as mutant p53 reactivators: A new paradigm in cancer therapeutics. Cancers (Basel), 2018, 10(6), 166.
[http://dx.doi.org/10.3390/cancers10060166] [PMID: 29843463]
[64]
Yu, Y.; Kalinowski, D.S.; Kovacevic, Z.; Siafakas, A.R.; Jansson, P.J.; Stefani, C.; Lovejoy, D.B.; Sharpe, P.C.; Bernhardt, P.V.; Richardson, D.R. Thiosemicarbazones from the old to new: Iron chelators that are more than just ribonucleotide reductase inhibitors. J. Med. Chem., 2009, 52(17), 5271-5294.
[http://dx.doi.org/10.1021/jm900552r] [PMID: 19601577]
[65]
Blanden, A.R.; Yu, X.; Loh, S.N.; Levine, A.J.; Carpizo, D.R. Reactivating mutant p53 using small molecules as zinc metallochaperones: Awakening a sleeping giant in cancer. Drug Discov. Today, 2015, 20(11), 1391-1397.
[http://dx.doi.org/10.1016/j.drudis.2015.07.006] [PMID: 26205328]
[66]
Yu, X.; Vazquez, A.; Levine, A.J.; Carpizo, D.R. Allele-specific p53 mutant reactivation. Cancer Cell, 2012, 21(5), 614-625.
[http://dx.doi.org/10.1016/j.ccr.2012.03.042] [PMID: 22624712]
[67]
J.J., Gorski; R.D., Kennedy; A.M., Hosey; D.P., Harkin The complex relationship between brca1 and erα in hereditary breast cancer. Clin. Cancer Res., 2009, 15(5), 1514-1518.
[68]
E. M., Rosen; Y., Ma; A., Preet; Y., Tomita; E., de Oliveira; L., Zhang; Y., Ueda; R., Clarke; M., Brown. A new class of small molecule estrogen receptor-alpha antagonists that overcome anti-estrogen resistance. Oncotarget, 2015, 6(38), 40388-40404.
[69]
C., Stark; B-J., Breitkreutz; T., Reguly; L., Boucher; A., Breitkreutz; M. Tyers. BioGRID: A general repository for interaction datasets. Nucleic Acids Res., 2006, 34, 535-539.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy