Skip to main content
Log in

A New Saturated Two-Phase Flow Boiling Correlation Based on Propane (R290) Data

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

There are plenty of literature research studies investigating two-phase heat transfer characteristics of propane under varying operational conditions. Based on the collected data retrieved from the experimental measurements, several flow boiling heat transfer correlations have been proposed up to now. However, the prediction accuracy of the proposed correlations for propane refrigerant is still in question as most of the correlation is developed for their measurements or derived for a limited range of operational conditions. To conquer this drawback, this study proposes a new flow boiling heat transfer model for smooth tubes based on a propane experimental database compiled of 2179 points obtained from different eighteen laboratories around the world. Operational conditions of the database cover mass fluxes between 50 and 600 kg/m2s, saturation temperatures between − 35.0 and 43.0 °C, heat fluxes between 2.5 and 227.0 kW/m2, hydraulic diameters between 0.3 and 7.7 mm, and thermodynamic qualities 0.01 to 0.99. Estimations performed by the new flow boiling model have been compared to those obtained by the literature correlations, and comparative results indicate that the proposed model surpasses the existing flow boiling in terms of prediction accuracy with a mean absolute error of 19.1% and mean relative error of 1.7%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

Bd:

Bond number

Bo:

Boiling number, \({\text{Bo}}\, = \,\frac{Q}{{G \cdot h_{{{\text{fg}}}} }}\)

C :

Chisholm parameter

C n :

Correlation constant

Co:

Convection number, \({\text{Co}}\, = \,\left( {\frac{1 - x}{x}} \right)^{0.8} \left( {\frac{{\rho_{{\text{v}}} }}{{\rho_{{\text{l}}} }}} \right)^{0.5}\)

Conf:

Confinement number, \({\text{Conf}}\, = \,\frac{{\sqrt {\left( {\frac{\sigma }{{g\left( {\rho_{{\text{l}}} - \rho_{{\text{v}}} } \right)}}} \right)} }}{{D_{{\text{h}}} }}\)

Cp:

Specific heat capacity (kJ/kg K)

D h :

Hydraulic tube diameter (m)

f :

Friction factor

F :

Two phase multiplier

Fr:

Froude number, \({\text{Fr}}\, = \,\frac{{G^{2} }}{{g \cdot D_{{\text{h}}} \cdot \rho^{2} }}\)

F f :

Fluid specific constant for Kandlikar correlation

g :

Gravitational acceleration constant (m/s2)

G :

Mass flux (kg/m2s)

h :

Heat transfer coefficient (W/m2K)

h fg :

Latent heat of vaporization (kJ/kg)

k :

Thermal conductivity (W/mK)

M :

Molar mass (kg/kmol)

MAE:

Mean absolute error

MRE:

Mean relative error

N :

Number of experimental data

p r :

Reduced pressure, \(p_{{\text{r}}} = \frac{{p_{{{\text{sat}}}} }}{{p_{{{\text{crit}}}} }}\)

Pr:

Prandtl number, \(\Pr = \frac{{\mu \cdot C_{{\text{p}}} }}{k}\)

Q,q :

Heat flux (W/m2)

Rel :

Liquid Reynolds number, \({\text{Re}}_{{\text{l}}} = \frac{{G\left( {1 - x} \right)D_{{\text{h}}} }}{{\mu_{{\text{l}}} }}\)

Relo :

Liquid-only Reynolds number, \({\text{Re}}_{{{\text{lo}}}} = \frac{{G \cdot D_{{\text{h}}} }}{{\mu_{{\text{l}}} }}\)

S :

Suppression factor

T :

Temperature (°C/K)

x :

Vapor quality

X tt :

Lockhart–Martinelli parameter, \(X_{{{\text{tt}}}} = \left( {\frac{1 - x}{x}} \right)^{0.9} \left( {\frac{{\rho_{{\text{v}}} }}{{\rho_{{\text{l}}} }}} \right)^{0.5} \left( {\frac{{\mu_{{\text{l}}} }}{{\mu_{{\text{v}}} }}} \right)^{0.1}\)

We:

Weber number, \({\text{We}} = \frac{{G^{2} \cdot g}}{\rho \cdot \sigma }\)

ε :

Surface roughness (μm)

μ :

Dynamic viscosity (Pa s)

ρ :

Density (kg/m3)

σ :

Surface tension (Pa/m

calc:

Calculated

cb:

Convective boiling

crit:

Critical

exp:

Experimental

g, V:

Gas, vapor

l:

Liquid

lo:

Liquid only

nb:

Nucleate boiling

pred:

Predicted

sat:

Saturated

sp:

Single phase

tp:

Two-phase

References

  1. Sardeshpande, M.; Ranade, V.V.: Two-phase flow boiling in small channels: a brief review. Sadhana 38, 1083–1125 (2013). https://doi.org/10.1007/s12046-013-0192-7

    Article  MathSciNet  MATH  Google Scholar 

  2. Fang, X.; Zhuang, F.; Chen, C.; Wu, Q.; Chen, Y.; Chen, Y.; He, Y.: Saturated flow boiling heat transfer: review and assessment of prediction methods. Heat Mass Transf. 5, 197–222 (2019). https://doi.org/10.1007/s00231-018-2432-1

    Article  Google Scholar 

  3. Gao, Y.; Shao, S.; Zhan, B.; Chen, Y.; Tian, C.: Heat transfer and pressure drop characteristics of ammonia during flow boiling inside a horizontal small diameter tube. Int. J. Heat Mass Transf. 127, 981–996 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2018.07.137

    Article  Google Scholar 

  4. Lillo, G.; Mastrullo, R.; Mauro, A.W.; Viscito, L.: Flow boiling heat transfer, dry-out vapor quality and pressure drop of propane (R290): experimental and assessment of predictive methods. Int. J. Heat Mass Transf. 126, 1236–1252 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2018.06.069

    Article  Google Scholar 

  5. Maqbool, M.M.; Palm, B.; Khodabandeh, R.: Investigation of two-phase heat transfer and pressure drop of propane in a vertical circular minichannel. Exp. Therm. Fluid Sci. 46, 120–130 (2013). https://doi.org/10.1016/j.expthermflusci.2012.12.002

    Article  Google Scholar 

  6. James, R.W.; Missenden, J.F.: The use of propane in domestic refrigerators Int. J. Refrig. 15, 95–100 (1992). https://doi.org/10.1016/0140-7007(92)90033-Q

    Article  Google Scholar 

  7. Shin, J.Y.; Kim, M.S.; Ro, S.T.: Experimental study on forced convective boiling heat transfer of pure refrigerants and refrigerant mixtures in a horizontal tube. Int. J. Refrig. 20, 267–275 (1997). https://doi.org/10.1016/S0140-7007(97)00004-2

    Article  Google Scholar 

  8. Gungor, K.E.; Winterton, R.H.S.: Simplified general correlation for saturated flow boiling and comparisons of correlations with data. Chem. Eng. Res. Des. 65, 148–156 (1987)

    Google Scholar 

  9. Lee, H.S.; Yoon, J.I.; Kim, J.D.; Bansal, P.: Evaporating heat transfer and pressure drop of hydrocarbon refrigerants in 9.52- and 12.70-mm smooth tube. Int. J. Heat Mass Transf. 48, 2351–2359 (2005). https://doi.org/10.1016/j.ijheatmasstransfer.2005.01.012

    Article  Google Scholar 

  10. Wen, M.Y.; Ho, C.Y.: Evaporation heat transfer and pressure drop characteristics of R290 (propane), R600 (butane), and a mixture of R-290/R-600 in three lines serpentine small tube bank. Appl. Therm. Eng. 25, 2921–2936 (2005). https://doi.org/10.1016/j.applthermaleng.2005.02.013

    Article  Google Scholar 

  11. Zou, X.; Gong, M.; Chen, G.; Sun, Z.; Wu, J.: Experimental study on saturated flow boiling heat transfer of R290/R152a binary mixtures in a horizontal tube. Front. Energ. Power Eng. China 4, 527–534 (2010). https://doi.org/10.1007/s11708-010-0109-7

    Article  Google Scholar 

  12. Yunos, Y.M.; Ghazali, N.M.; Pamitran, A.S.; Novianto, S.: Analysis of the Two-phase heat transfer coefficient of propane in small channel. Energy Procedia 105, 4635–4640 (2017). https://doi.org/10.1016/j.egypro.2017.03.1004

    Article  Google Scholar 

  13. de Oliveira, J.D.; Passos, J.C.; Copetti, J.B.; van der Geld, C.W.M.: Flow boiling heat transfer of propane in 1.0 mm tube. Exp. Therm. Fluid. Sci. 96, 243–256 (2018). https://doi.org/10.1016/j.expthermflusci.2018.03.010

    Article  Google Scholar 

  14. Citarella, B.; Lillo, G.; Mastrullo, R.; Mauro, A.W.; Viscito, L.: Experimental investigation on flow boiling heat transfer and pressure drop of refrigerants R32 and R290 in a stainless-steel horizontal tube. J. Phys. Conf. Ser. 1224, 012041 (2019). https://doi.org/10.1088/1742-6596/1224/1/012041

    Article  Google Scholar 

  15. Kandlikar, S.G.: Fundamental issues related to flow boiling in minichannel and microchannels. Exp. Therm. Fluid Sci. 26, 38–47 (2002). https://doi.org/10.1016/S0894-1777(02)00150-4

    Article  Google Scholar 

  16. Anwar, Z.; Ahmed, I.; Noor, F.; Ali, Z.; Imran, S.; Siyal, S.H.; Sultan, T.: Flow boiling heat transfer characteristics of R600A and R290 in vertical mini-channels. JFET 21, 164–181 (2014)

    Google Scholar 

  17. Chien, N.B.; Vu, P.Q.; Choid, K.I.; Oh, J.T.: Boiling heat transfer of R32, CO2 and R290 inside Horizontal Minichannel. Energy Procedia 105, 4822–4827 (2017). https://doi.org/10.1016/j.egypro.2017.03.955

    Article  Google Scholar 

  18. Chien, N.B.; Vu, P.Q; Choi, K.I.; Oh, J.T.: An experimental investigation of convective boiling heat transfer using alternative and natural refrigerants inside horizontal microchannels. In: International Refrigeration and Air Conditioning Conference, Paper 1669 (2016)

  19. Choi, K.I.; Oh, J.T.: Characteristics of two-phase flow boiling heat transfer of NH3, C3H8 and CO2 in horizontal circular small tubes. In: 7th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, 19–21 July, Antalya, Turkey (2010)

  20. Del Col, D.; Bortolato, M.; Bortolin, S.: Comprehensive experimental investigation of two-phase heat transfer and pressure drop with propane in a minichannel. Int. J. Refrig. 47, 66–84 (2014). https://doi.org/10.1016/j.ijrefrig.2014.08.002

    Article  Google Scholar 

  21. Allymehr, E. Experimental investigation of EVAPORATION of Propane (R290) in Small Pipes, Master Thesis, Politecnico Di Milano, Italy (2017)

  22. Longo, G.A.; Mancin, S.; Righetti, G.; Zilio, C.: Hydrocarbon refrigerants HC290(Propane) and HC1270(Propylene) low GWP long-term substitutes for HFC404A: a comparative analysis in vaporization inside a small-diameter horizontal smooth tube. Appl. Therm. Eng. 124, 707–715 (2017). https://doi.org/10.1016/j.applthermaleng.2017.06.080

    Article  Google Scholar 

  23. Maqbool, M.H.; Palm, B.; Khodabandeh, R.; Ali, R.R.: Saturated flow boiling heat transfer characteristics of propane in a smooth vertical minichannel up to dryout incipience. In: 23rd IIR Congress of Refrigeration, Prague, Czech Republic, 21–26 August, 2011

  24. Pamitran, A.S.; Choi, K.I.; Oh, J.T.; Park, K.W.: Two-phase flow heat transfer of propane vaporization in horizontal minichannels. J. Mech. Sci. Technol. 23, 599–606 (2009). https://doi.org/10.1007/s12206-008-0913-8

    Article  Google Scholar 

  25. Pamitran, A.S.; Choi, K.I.; Oh, J.T.: Nasruddin: evaporation heat transfer coefficient in single circular small tubes for flow natural refrigerants of C3H8, NH3 and CO2. Int. J. Multiph. Flow 37, 794–801 (2011). https://doi.org/10.1016/j.ijmultiphaseflow.2011.02.005

    Article  Google Scholar 

  26. Wang, S.; Gong, M.; Chen, G.; Wu, J.; Sun, Z.; Zou, X.: Two-phase flow boiling heat transfer characteristic of propane in a smooth horizontal tube. In: Proceedings of 24th International Cryogenic Engineering Conference and International Cryogenic Materials Conference, Fukuoka, Japan, 14–18 May, 2012

  27. Wang, S.; Gong, M.Q.; Chen, G.F.; Sun, Z.H.; Wu, J.F.: Two-phase heat transfer and pressure drop of propane during saturated flow boiling inside a horizontal tube. Int. J. Refrig. 41, 200–209 (2014). https://doi.org/10.1016/j.ijrefrig.2013.03.019

    Article  Google Scholar 

  28. Zhu, Y.; Wu, X.; Wei, Z.: Heat transfer characteristics and correlation for CO2/propane mixtures flow evaporation in a smooth mini tube. Appl. Therm. Eng. 81, 253–261 (2015). https://doi.org/10.1016/j.applthermaleng.2015.02.009

    Article  Google Scholar 

  29. Dougall, R.S.; Rohsenow, W.M.: Film Boiling on the Inside of Vertical Tubes with Upward Flow of the Fluid at Low Qualities. MIT Report No.9079-26 (1963)

  30. Groeneveld, D.C.: An Investigation of Heat Transfer in the Liquid Deficient Regime. Report AECL-3281 (1969)

  31. Dittus, F.W.; Boelter, L.M.K.: Heat transfer in automobile radiators of the tubular type. Int. Commun. Heat Mass Transf. 12, 3–22 (1985). https://doi.org/10.1016/0735-1933(85)90003-X

    Article  MATH  Google Scholar 

  32. Kenning, D.B.R.; Cooper, M.G.: Saturated flow boiling of water in vertical tubes. Int. J. Heat Mass Transf. 32, 445–458 (1989). https://doi.org/10.1016/0017-9310(89)90132-4

    Article  Google Scholar 

  33. Kew, P.A.; Cornwell, K.: Correlations for prediction of boiling heat transfer in small-diameter channels. Appl. Therm. Eng. 17, 705–715 (1997). https://doi.org/10.1016/S1359-4311(96)00071-3

    Article  Google Scholar 

  34. Li, W.; Wu, Z.: A general correlation for evaporative heat transfer in micro/mini channels. Int. J. Heat Mass Transf. 53, 1778–1787 (2010). https://doi.org/10.1016/j.ijheatmasstransfer.2010.01.012

    Article  Google Scholar 

  35. Yan, Y.Y.; Lin, T.F.: Evaporation heat transfer and pressure drop of refrigerant R-134a in a small pipe. Int. J. Heat Mass Transf. 41, 4183–4194 (1998). https://doi.org/10.1016/S0017-9310(98)00127-6

    Article  Google Scholar 

  36. Chen, J.C.: Correlation for boiling heat transfer to saturated fluids in convective flow. I&EC Process. Des. Dev. 5, 322–329 (1966). https://doi.org/10.1021/i260019a023

    Article  Google Scholar 

  37. Gungor, K.E.; Winterton, R.H.S.: General correlation for flow boiling in tubes and annuli. Int. J. Heat Mass Transf. 26, 351–358 (1986). https://doi.org/10.1016/0017-9310(86)90205-X

    Article  MATH  Google Scholar 

  38. Jung, D.S.; McLinden, M.; Radermacher, R.; Didion, D.: A study of flow boiling heat transfer with refrigerant mixtures. Int. J. Heat Mass Transf. 32, 1751–1764 (1989). https://doi.org/10.1016/0017-9310(89)90057-4

    Article  Google Scholar 

  39. Choi, K.I.; Pamitran, A.S.; Oh, J.T.: Two-phase flow heat transfer of CO2 vaporization in smooth horizontal mini channels. Int. J. Refrig. 30, 767–777 (2016). https://doi.org/10.1016/j.ijrefrig.2006.12.006

    Article  Google Scholar 

  40. Mahmoud, M.M.; Karayiannis, T.G.: Heat transfer correlation for flow boiling in small to micro tubes. Int. J. Heat Mass Transf. 66, 553–574 (2013). https://doi.org/10.1016/j.ijheatmasstransfer.2013.07.042

    Article  Google Scholar 

  41. Cooper, M.G.: Heat flow rates in saturated nucleate pool boiling—a wide ranging examination using reduced properties. Adv. Heat. Trans. 16, 157–239 (1984). https://doi.org/10.1016/S0065-2717(08)70205-3

    Article  Google Scholar 

  42. Stephan, K.; Abdelselam, M.: Heat transfer correlations for natural convection boiling. Int. J. Heat Mass Transf. 23, 73–87 (1980). https://doi.org/10.1016/0017-9310(80)90140-4

    Article  Google Scholar 

  43. Sun, L.; Mishima, K.: An evaluation of prediction methods for saturated flow boiling heat transfer in mini-channels. Int. J. Heat Mass Transf. 52, 5323–5329 (2009). https://doi.org/10.1016/j.ijheatmasstransfer.2009.06.041

    Article  MATH  Google Scholar 

  44. Lazarek, G.M.; Black, S.H.: Evaporative heat transfer, pressure drop and critical heat flux in a small vertical tube with R-113. Int. J. Heat Mass Transf. 25, 945–959 (1982). https://doi.org/10.1016/0017-9310(82)90070-9

    Article  Google Scholar 

  45. Hamdar, M.; Zoughaib, A.; Clodic, D.: Flow boiling heat transfer and pressure drop of pure HFC-152a in a horizontal mini-channel. Int. J. Refrig. 33, 566–577 (2010). https://doi.org/10.1016/j.ijrefrig.2009.12.006

    Article  Google Scholar 

  46. Tran, T.; Wambsganss, M.W.; France, D.M.: Small circular- and rectangular channel boiling with two refrigerants. Int. J. Multiphas. Flow 22, 485–498 (1996). https://doi.org/10.1016/0301-9322(96)00002-X

    Article  MATH  Google Scholar 

  47. Yu, W.; France, D.M.; Wambsganss, M.W.; Hull, J.R.: Two phase pressure drop, boiling heat transfer and critical heat flux to water in a small diameter horizontal tube. Int. J. Multiphas. Flow 28, 927–941 (2002). https://doi.org/10.1016/S0301-9322(02)00019-8

    Article  MATH  Google Scholar 

  48. Liu, Z.; Winterton, R.H.S.: A general correlation for saturated and subcooled flow boiling in tubes and annuli based on a nucleate pool boiling equation. Int. J. Heat Mass Transf. 34, 2759–2766 (1991). https://doi.org/10.1016/0017-9310(91)90234-6

    Article  Google Scholar 

  49. Wattelet, J.P.; Chato, J.C.; Souza, A.L.; Christoffersen, B.R.: Evaporative characteristics of R-12, R134a, and a mixture at low mass fluxes. ASHRAE Trans. 100, 603–615 (1994)

    Google Scholar 

  50. Shah, M.M.: Chart correlation for saturated boiling heat transfer: equation and further study. ASHRAE Trans. 88, 185–196 (1982)

    Google Scholar 

  51. Kandlikar, S.G.: A general correlation for two phase flow boiling heat transfer inside horizontal and vertical tubes. J. Heat Transf. 112, 219–228 (1990). https://doi.org/10.1115/1.2910348

    Article  Google Scholar 

  52. Ducoulombier, M.; Colasson, S.; Bonjour, J.; Haberschill, P.: Carbon dioxide flow boiling in a single microchannel—part II: heat transfer. Exp. Therm. Fluid Sci. 35, 597–611 (2011). https://doi.org/10.1016/j.expthermflusci.2010.11.014

    Article  Google Scholar 

  53. Lemmon, E.W.; McLinden, M.O.; Huber, M.L.: REFPROP, NIST Standard Reference Database 23, Version 7.1. (2013)

  54. Fang, X.; Zhou, Z.; Wang, H.: Heat transfer correlation for saturated flow boiling of water. Appl. Therm. Eng. 76, 147–156 (2015). https://doi.org/10.1016/j.applthermaleng.2014.11.024

    Article  Google Scholar 

  55. Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H.: Harris hawks optimization: algorithm and applications. Future Gener. Comput. Syst. 97, 849–872 (2019). https://doi.org/10.1016/j.future.2019.02.028

    Article  Google Scholar 

  56. Fang, X.; Zhou, Z.; Li, D.: Review of correlations of flow boiling heat transfer coefficients for carbon-dioxide. Int. J. Refrig. 36, 2017–2039 (2013). https://doi.org/10.1016/j.ijrefrig.2013.05.015

    Article  Google Scholar 

  57. Thome, J.R.; El Hajal, J.: Flow boiling heat transfer to carbon dioxide: general prediction method. Int. J. Refrig. 28, 294–301 (2004). https://doi.org/10.1016/j.ijrefrig.2003.08.003

    Article  Google Scholar 

  58. Saitoh, S.; Diaguji, H.; Hihara, E.: Correlation for boiling heat transfer of R134a in horizontal tubes including the effect of tube diameter. Int. J. Heat Mass Transf. 50, 5215–5225 (2007). https://doi.org/10.1016/j.ijheatmasstransfer.2007.06.019

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oguz Emrah Turgut.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turgut, O.E., Coban, M.T. A New Saturated Two-Phase Flow Boiling Correlation Based on Propane (R290) Data. Arab J Sci Eng 46, 7851–7874 (2021). https://doi.org/10.1007/s13369-021-05593-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05593-9

Keywords

Navigation