Skip to main content
Log in

Explicit solution of atmospheric Ekman flows with some types of Eddy viscosity

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

In this paper, we study the standard problem of the wind in the steady atmospheric Ekman layer with classical boundary conditions. We consider the system with varying eddy viscosity coefficients that are small perturbation of a constant. We derive the explicit solution by using a different argument in the previous works. For two layers, the eddy viscosity is constant in the upper layer, while is only continuous with height in the lower layer, we transform the system to a first order Riccati equation with a suitable initial value and derive the solution for piecewise-constant eddy viscosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Holton, J.R.: An Introduction to Dynamic Metorology. Academic Press, New York (2004)

    Google Scholar 

  2. Marshall, J., Plumb, R.A.: Atmosphere, Ocean and Climate Dynamic, An Introduction Text. Academic Press, New York (2018)

    Google Scholar 

  3. Ekman, V.W.: On the influence of the earth’s rotation on ocean-currents. Ark. Mat. Astron. Fys. 2, 1–52 (1905)

    MATH  Google Scholar 

  4. Zdunkowski, W., Bott, A.: Dynamic of the Atmosphere. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  5. Constantin, A., Ivanov, R.I.: Equatorial wave–current interactions. Commun. Math. Phys. 370, 1–48 (2019)

    Article  MathSciNet  Google Scholar 

  6. Constantin, A., Johnson, R.S.: Steady large-scale ocean flows in spherical coordinates. Oceanography 31, 42–50 (2018)

    Article  Google Scholar 

  7. Marynets, K.: A Sturm–Liouville problem arising in the atmospheric boundary-layer dynamics. J. Math. Fluid Mech. 41, 22 (2020)

    MathSciNet  MATH  Google Scholar 

  8. Haltinar, G.J., Williams, R.T.: Numercial Prediction and Dynamic Metorology. Wiley Press, New York (1980)

    Google Scholar 

  9. Pedlosky, J.: Geophysical Fluid Dynamic. Springer, New York (1987)

    Book  Google Scholar 

  10. Madsen, O.S., Secher, O.: A realistic model of the wind-induced boundary layer. J. Phys. Oceanogr. 7, 248–255 (1977)

    Article  Google Scholar 

  11. Miles, J.: Analytical solutions for the Ekman layer. Bound. Layer Meteorol. 67, 1–10 (1994)

    Article  Google Scholar 

  12. Nieuwstadt, F.T.M.: On the solution of the stationary, baroclinic Ekman-layer equations with a finite boundary-layer height. Bound. Layer Meteorol. 26, 377–390 (1983)

    Article  Google Scholar 

  13. Grisogono, B.: A generalized Ekman layer profile with gradually varying eddy diffusivities. Q. J. R. Meteorol. Soc. 121, 445–453 (1995)

    Article  Google Scholar 

  14. Parmhed, O., Kos, I., Grisogono, B.: An improved Ekman layer approximation for smooth eddy diffusivity profiles. Bound. Layer Meteorol. 115, 399–407 (2002)

    Article  Google Scholar 

  15. Tan, Z.M.: An approximate analytical solution for the baroclinic and variable eddy diffusivity semi-geostrophic Ekman boundary layer. Bound. Layer Meteorol. 98, 361–385 (2001)

    Article  Google Scholar 

  16. Zhang, Y., Tan, Z.M.: The diurnal wind variation in a variable eddy viscosity semi-geostrophic Ekman boundary-layer model: analytical study. Meteorol. Atmos. Phys. 81, 207–217 (2002)

    Article  Google Scholar 

  17. Constantin, A., Johnson, R.S.: Atmospheric Ekman flows with variable eddy viscosity. Bound. Layer Meteorol. 170, 395–414 (2019)

    Article  Google Scholar 

  18. Bressan, A., Constantin, A.: The deflection angle of surface ocean currents from the wind direction. J. Geophys. Res. Oceans 124, 7412–7420 (2019)

    Article  Google Scholar 

  19. Fečkan, M., Guan, Y., O’Regan, D., Wang, J.: Existence and uniqueness and first order approximation of solutions to atmospheric Ekman flows. Monatshefte für Mathematik 193, 623–636 (2020)

    Article  MathSciNet  Google Scholar 

  20. Constantin, A., Dritschel, D.G., Paldor, N.: An algorithm for the deflection angle of surface ocean currents relative to the wind direction. Phys. Fluids (2020). https://doi.org/10.1002/essoar.10503600.1

    Article  Google Scholar 

  21. Dritschel, D.G., Paldor, N., Constantin, A.: The Ekman spiral for piecewise-uniform diffusivity. Ocean Sci. Discuss. 16, 1089–1093 (2020)

    Article  Google Scholar 

  22. Constantin, A.: Frictional effects in wind-driven ocean currents. Geophys. Astrophys. Fluid Dyn. 115, 1–14 (2021)

    Article  MathSciNet  Google Scholar 

  23. Hartman, P.: Ordinary Differential Equations. Willey, New York (1964)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JinRong Wang.

Additional information

Communicated by Adrian Constantin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is partially supported by the National Natural Science Foundation of China (11661016), Training Object of High Level and Innovative Talents of Guizhou Province ((2016)4006), Department of Science and Technology of Guizhou Province (Fundamental Research Program [2018]1118), Guizhou Data Driven Modeling Learning and Optimization Innovation Team ([2020]5016), Natural Science Foundation of Guizhou Province ([2020]090), the Slovak Research and Development Agency under the Contract No. APVV-18-0308, and the Slovak Grant Agency VEGA No. 1/0358/20 and No. 2/0127/20.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, Y., Fečkan, M. & Wang, J. Explicit solution of atmospheric Ekman flows with some types of Eddy viscosity. Monatsh Math 197, 71–84 (2022). https://doi.org/10.1007/s00605-021-01551-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-021-01551-7

Keywords

Mathematics Subject Classification

Navigation