Skip to main content
Log in

Errors Associated in Seebeck Coefficient Measurement for Thermoelectric Metrology

  • Review Paper
  • Published:
MAPAN Aims and scope Submit manuscript

Abstract

Accurate and precise measurement with authentic data dispersion can be considered as a prime tool to realize any technologies at large scale. In the context of thermoelectric technology, a combination of Seebeck coefficient (α), electrical conductivity (σ) and thermal conductivity (κ) are prominent physical parameters that dictate the performance of thermoelectric materials. In this review article, we have stressed the attention on accurate and precise measurement of Seebeck coefficient that includes various sources of errors from contact geometry, sensors, measurement techniques and thermocouple. In addition to this, the solution of minimizing the errors associated in Seebeck measurement has also been elaborated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H. Scherrer, Bismuth Telluride, Anitmony Telluride, and Their Solid Solutions, CRC Handb. Thermoelectr. 211 (1995).

  2. G.S. Nolas, J. Sharp, H.J.G. Thermoelectrics, Basic principles and new materials developments, in: Thermoelectrics, Springer, 2001.

  3. R.A. Taylor, G.L. Solbrekken, Comprehensive system-level optimization of thermoelectric devices for electronic cooling applications, IEEE Trans. Components Packag. Technol. 31 (2008) 23–31.

  4. K. Matsubara, Development of a high efficient thermoelectric stack for a waste exhaust heat recovery of vehicles, in: Twenty-First Int. Conf. Thermoelectr. 2002. Proc. ICT’02., IEEE, 2002: pp. 418–423.

  5. G.J. Snyder, E.S. Toberer, Complex thermoelectric materials, Nat. Mater. 7 (2008) 105–114. https://doi.org/https://doi.org/10.1038/nmat2090.

  6. G.S. (George S.. Nolas 1962-, Thermoelectrics: basic principles and new materials developments / G.S. Nolas, J. Sharp, H.J. Goldsmid, Springer, Berlin; London, 2001. http://www.loc.gov/catdir/enhancements/fy0816/00052671-t.html.

  7. O. Boffoué, A. Jacquot, A. Dauscher, B. Lenoir, M. Stölzer, Experimental setup for the measurement of the electrical resistivity and thermopower of thin films and bulk materials, Rev. Sci. Instrum. 76 (2005) 53907.

  8. A.T. Burkov, A. Heinrich, P.P. Konstantinov, T. Nakama, K. Yagasaki, Experimental set-up for thermopower and resistivity measurements at 100-1300 K, Meas. Sci. Technol. 12 (2001) 264.

  9. H. Werheit, U. Kuhlmann, B. Herstell, W. Winkelbauer, Reliable measurement of Seebeck coefficient in semiconductors, in: J. Phys. Conf. Ser., IOP Publishing, 2009: p. 12037.

  10. K.A. Borup, J. de Boor, H. Wang, F. Drymiotis, F. Gascoin, X. Shi, L. Chen, M.I. Fedorov, E. Müller, B.B. Iversen, G.J. Snyder, Measuring thermoelectric transport properties of materials, Energy Environ. Sci. 8 (2015) 423–435. https://doi.org/https://doi.org/10.1039/C4EE01320D.

  11. . Martin, W. Wong-Ng, M.L. Green, Seebeck Coefficient Metrology: Do Contemporary Protocols Measure Up?, J. Electron. Mater. 44 (2015) 1998–2006. https://doi.org/https://doi.org/10.1007/s11664-015-3640-9.

  12. J. Martin, Protocols for the high temperature measurement of the Seebeck coefficient in thermoelectric materials, Meas. Sci. Technol. 24 (2013). https://doi.org/https://doi.org/10.1088/0957-0233/24/8/085601.

  13. J. Martin, T. Tritt, C. Uher, High temperature Seebeck coefficient metrology, J. Appl. Phys. 108 (2010) 14.

  14. J. Mackey, F. Dynys, A. Sehirlioglu, Uncertainty analysis for common Seebeck and electrical resistivity measurement systems, Rev. Sci. Instrum. 85 (2014). https://doi.org/https://doi.org/10.1063/1.4893652.

  15. J. de Boor, E. Müller, Data analysis for Seebeck coefficient measurements, Rev. Sci. Instrum. 84 (2013) 65102.

  16. A.T. Burkov, A.I. Fedotov, S. V Novikov, Methods and apparatus for measuring thermopower and electrical conductivity of thermoelectric materials at high temperatures, Thermoelectr. Power Gener. Look Trends Technol. (2016) 353–389.

  17. R.R. Heikes, R.W. Ure, Thermoelectricity: science and engineering, Interscience Publishers, 1961.

  18. T.M. Tritt, V.M. Browning, Overview of measurement and characterization techniques for thermoelectric materials, in: Semicond. Semimetals, Elsevier, 2001: pp. 25–49.

  19. B. Cassagne, G. Kirsch, J.P. Bardon, THEORETICAL-ANALYSIS OF THE ERRORS DUE TO STRAY HEAT-TRANSFER DURING THE MEASUREMENT OF SURFACE-TEMPERATURE BY DIRECT CONTACT, Int. J. Heat Mass Transf. 23 (1980) 1207–1217.

  20. A. Zevalkink, D.M. Smiadak, J.L. Blackburn, A.J. Ferguson, M.L. Chabinyc, O. Delaire, J. Wang, K. Kovnir, J. Martin, L.T. Schelhas, A practical field guide to thermoelectrics: Fundamentals, synthesis, and characterization, Appl. Phys. Rev. 5 (2018) 21303.

  21. A. Trombe, J.A. Moreau, Surface temperature measurement of semi-transparent material by thermocouple in real site experimental approach and simulation, Int. J. Heat Mass Transf. 38 (1995) 2797–2807.

  22. M. Stordeur, D.M. Rowe, CRC Handbook of Thermoelectrics, 1995.

  23. C. Wood, A. Chmielewski, D. Zoltan, Measurement of Seebeck coefficient using a large thermal gradient, Rev. Sci. Instrum. 59 (1988) 951–954.

  24. D.M. Rowe, Thermoelectrics handbook: macro to nano, CRC press, 2018.

  25. P.I. Wold, The hall effect and allied phenomena in tellurium, Phys. Rev. 7 (1916) 169.

  26. H.-S. Kim, Z.M. Gibbs, Y. Tang, H. Wang, G.J. Snyder, Characterization of Lorenz number with Seebeck coefficient measurement, APL Mater. 3 (2015) 41506.

  27. L.R. Testardi, G.K. McConnell, Measurement of the Seebeck coefficient with small temperature differences, Rev. Sci. Instrum. 32 (1961) 1067–1068. https://doi.org/https://doi.org/10.1063/1.1717624.

  28. J.E. Ivory, Rapid Method for Measuring Seebeck Coefficient as Δ T Approaches Zero, Rev. Sci. Instrum. 33 (1962) 992–993.

  29. R.H. Freeman, J. Bass, An ac system for measuring thermopower, Rev. Sci. Instrum. 41 (1970) 1171–1174.

  30. R.A. Horne, Errors associated with thermoelectric power measurements using small temperature differences, Rev. Sci. Instrum. 31 (1960) 459–460.

  31. J. Mackey, F. Dynys, A. Sehirlioglu, Uncertainty analysis for common Seebeck and electrical resistivity measurement systems, Rev. Sci. Instrum. 85 (2014) 85119.

  32. J. Liu, Y. Zhang, Z. Wang, M. Li, W. Su, M. Zhao, S. Huang, S. Xia, C. Wang, Accurate measurement of Seebeck coefficient, Rev. Sci. Instrum. 87 (2016) 64701.

  33. N.D. Lowhorn, W. Wong-Ng, Z.Q. Lu, E. Thomas, M. Otani, M. Green, N. Dilley, J. Sharp, T.N. Tran, Development of a seebeck coefficient standard reference material, Appl. Phys. A. 96 (2009) 511–514.

  34. F. Edler, E. Lenz, S. Haupt, Reference material for Seebeck coefficients, Int. J. Thermophys. 36 (2015) 482–492.

  35. H. Wang, W.D. Porter, H. Böttner, J. König, L. Chen, S. Bai, T.M. Tritt, A. Mayolet, J. Senawiratne, C. Smith, Transport properties of bulk thermoelectrics: an international round-robin study, part II: thermal diffusivity, specific heat, and thermal conductivity, J. Electron. Mater. 42 (2013) 1073–1084.

  36. H. Okamoto, T.B. Massalski, The Ag− Au (Silver-Gold) system, Bull. Alloy Phase Diagrams. 4 (1983) 30.

Download references

Acknowledgement

This article is summarized as an effort to developing the laboratory on TE metrology at CSIR-NPL, New Delhi, India. One of the authors SB acknowledges UGC for financial support. Director, CSIR-NPL, is highly acknowledged for his initiation of TE metrology activity in India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinesh Kumar Misra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bano, S., Kumar, A. & Misra, D.K. Errors Associated in Seebeck Coefficient Measurement for Thermoelectric Metrology. MAPAN 36, 423–434 (2021). https://doi.org/10.1007/s12647-021-00439-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12647-021-00439-z

Keywords

Navigation