Skip to main content
Log in

Broadcasting of NPT entanglement in two qutrit systems

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

It is known that beyond \(2 \otimes 2\) and \(2 \otimes 3\) dimensional quantum systems, Peres–Hordecki criterion is no longer sufficient as an entanglement detection criterion as there are entangled states with both positive and negative partial transpose (PPT and NPT). Further, it is also true that all PPT entangled states are bound entangled states. However, in the class of NPT states, there exist bound entangled states as well as free entangled states. All free/useful/distillable entanglements are part of the class of NPT entangled states. In this article, we ask the question that given an NPT entangled state in \(3 \otimes 3\) dimensional system as a resource, how much entanglement can we broadcast so that resource still remains NPT. We have chosen \(3 \otimes 3\) system as a first step to understand broadcasting of NPT states in higher dimensional systems. In particular, we find out the range of broadcasting of NPT entanglement for two-parameter class of states (TPCS) and isotropic states (IS). Interestingly, as a derivative of this process we are also able to locate the existence of absolute PPT (ABPPT) states in \(3 \otimes 3\) dimensional system. Here we implement the strategy of broadcasting through approximate cloning operations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. M Mohseni et al, Nat. News 543, 171 (2017)

    Article  Google Scholar 

  2. R Won, Nat. Phot. 13, 77 (2019)

    Article  Google Scholar 

  3. R Bedington, J M Arrazola and A Ling, Quantum Inf. 3(1), 30 (2017)

    Article  Google Scholar 

  4. C H Bennett et al, Phys. Rev. Lett. 70, 1895 (1993); R Horodecki, M Horodecki and P Horodecki, Phys. Lett. A 222, 21 (1996)

  5. M Hillery, V Buzek and A Berthiaume, Phys. Rev. A 59, 1829 (1999); S Sazim et al, Quantum Inf. Process. 14, 4651 (2015); S Adhikari, I Chakrabarty and P Agrawal, Quantum Inf. Comput. 12, 0253 (2012); M Ray, S Chatterjee and I Chakrabarty, Eur. Phys. J. D 70, 114 (2016)

  6. C H Bennett and S J Weisner, Phys. Rev. Lett. 69, 2881 (1992); R Nepal et al, Phys. Rev. A 87, 032336 (2013)

  7. C H Bennett and G Brassard, Proceedings of IEEE International Conference on Computers, System and Signal Processing, pp. 175–179 (1984); A K Ekert, Phys. Rev. Lett. 67, 661 (1991); P W Shor and J Preskill, Phys. Rev. Lett. 85, 441 (2000)

  8. D Gottesman and I Chuang, arXiv:quant-ph/0105032v2 (2001); C Croal et al, Phys. Rev. Lett. 117, 100503 (2016)

  9. S Sazim and I Chakrabarty, Eur. Phys. J. D 67, 174 (2013)

    Article  ADS  Google Scholar 

  10. http://www.idquantique.com

  11. W K Wootters and W H Zurek, Nature 299, 802 (1982)

    Article  ADS  Google Scholar 

  12. H Barnum et al, Phys. Rev. Lett. 99, 240501 (2007)

    Article  ADS  Google Scholar 

  13. J A Bergou, J. Mod. Opt. 57, 160 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  14. D Bruß and C Macchiavello, Phys. Rev. Lett. 88, 127901 (2002)

    Article  ADS  Google Scholar 

  15. H Barnum et al, Phys. Rev. Lett. 76, 2818 (1996)

    Article  ADS  Google Scholar 

  16. I Chakrabarty and B S Choudhury, arXiv:quant-ph/0608023 (2006); M Lemm and M M Wilde, Phys. Rev. A 96, 012304 (2017)

  17. V Scarani et al, Rev. Mod. Phys. 77, 1225 (2005)

    Article  ADS  Google Scholar 

  18. V Buzek and M Hillery, Phys. Rev. Lett. 81, 5003 (1998)

    Article  ADS  Google Scholar 

  19. V Buzek and M Hillery, Phys. Rev. A 54, 1844 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  20. N Gisin and S Massar, Phys. Rev. Lett. 79, 2153 (1997)

    Article  ADS  Google Scholar 

  21. N Gisin, Phys. Lett. A 242, 1 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  22. S Adhikari, B S Choudhury and I Chakrabarty, J. Phys. A 39, 26 (2006)

    Article  Google Scholar 

  23. L M Duan and G C Guo, Phys. Rev. Lett. 80, 4999 (1998); L Hardy and D D Song, Phys. Lett. A 259, 331 (1999)

  24. N J Cerf et al, Phys. Rev. Lett. 88, 127902 (2002); I Ghiu, Phys. Rev. A 67, 012323 (2003); S Iblisdir et al, Phys. Rev. A 72, 042328 (2005); Phys. Rev. Lett. 112, 110502 (2014)

  25. H J Kimble, Nature 453, 1023 (2008)

    Article  ADS  Google Scholar 

  26. S Wehner, D Elkouss and R Hanson, Science 362, eaam9288 (2018)

  27. M Pant et al, npj Quant. Inf. 5, 25 (2019)

    Article  ADS  Google Scholar 

  28. J I Cirac et al, Phys. Rev. A 59, 4249 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  29. D Gottesman, T Jennewein and S Croke, Phys. Rev. Lett. 109, 070503 (2012)

    Article  ADS  Google Scholar 

  30. A Broadbent, J Fitzsimons and E Kashefi, 50th Annual IEEE Symposium on Foundations of Computer Science (Atlanta, GA, USA, 2009) pp. 517–526

  31. V Buzek et al, Phys. Rev. A 55, 3327 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  32. S Chatterjee, S Sazim and I Chakrabarty, Phys. Rev. A 93, 042309 (2016)

    Article  ADS  Google Scholar 

  33. S Bandyopadhyay and G Kar, Phys. Rev. A 60, 3296 (1999)

    Article  ADS  Google Scholar 

  34. A Jain, I Chakrabarty and S Chatterjee, Phys. Rev. A 99, 022315 (2019)

    Article  ADS  Google Scholar 

  35. U K Sharma, I Chakrabarty and M K Shukla, Phys. Rev. A 96, 052319 (2017)

    Article  Google Scholar 

  36. R Mundra, D Patel, I Chakrabarty, N Ganguly and Sourav Chatterjee, arXiv:1807.11002; Phys. Rev. A (2019) (in press)

  37. A Peres, Phys. Rev. Lett. 77, 1413 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  38. M Horodecki, P Horodecki and R Horodecki, Phys. Rev. A 223, 1 (1996)

    Google Scholar 

  39. S Arunachalam, N Johnston and V Russo, Quantum Inf. Comput. 15(7, 8), 0694 (2015)

  40. DiVincenzo et al, Phys. Rev. A 61, 062312 (2000)

Download references

Acknowledgements

NG would like to acknowledge support from the Research Initiation Grant of BITS-Pilani, Hyderabad vide letter No. BITS/GAU/RIG/2019/H0680 dated 22 April 2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rounak Mundra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mundra, R., Chattopadhyay, S., Chakrabarty, I. et al. Broadcasting of NPT entanglement in two qutrit systems. Pramana - J Phys 95, 60 (2021). https://doi.org/10.1007/s12043-021-02098-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-021-02098-w

Keywords

PACS No

Navigation