Skip to main content

Advertisement

Log in

Functional Design to Protect TZM Alloy Against Oxidation

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

One of the most important disadvantages of molybdenum (Mo) and Mo-based alloys is low oxidation resistance at elevated temperatures. TZM is a well-known Mo-based alloy having a composition containing small quantities of titanium, zirconium and carbon. These additional elements provide superior properties to TZM; however, low oxidation resistance still prevents use of this alloy over 650 °C without protection. In the present work, ceramic-based layers were formed on the surface of TZM by spark plasma sintering method. B4C–Si and Al2O3–Si powder mixtures were used to form protective layers against oxidation. Ceramic–metal (TZM)–ceramic sandwich-type samples were prepared in a single step at constant temperature of 1420 °C, pressure (40 MPa) and various holding times (5–10 min) under vacuum atmosphere. Densification behavior, phase analysis, oxidation resistance, dynamic flame test performance and hardness of the samples were investigated. Ceramic-based layers were formed successfully on the surface of TZM without any crack or spallation and bonded with different kinds of diffusion layers depending on composition. Oxidation resistance and dynamic flame test performance of TZM were improved about 70%. The highest hardness values at the surface layers were measured as 32.7 GPa and 13.8 GPa for B4C–Si and Al2O3 additions, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. C. K. Gupta, Extractive Metallurgy of Molybdenum, (CRC Press Inc., Florida, USA, 1992).

    Google Scholar 

  2. J. A. Shields, Applications of Mo Metal and Its Alloys, (International Molybdenum Association, London, UK, 2013).

    Google Scholar 

  3. H. Walser and J. A. Shields, Traditional and Emerging Applications of Molybdenum Metal and Its Alloys, (IMOA Newsletter, London, UK, 2007).

    Google Scholar 

  4. J. Wadsworth and J. P. Wittenauer, The History and Development of Molybdenum Alloys for Structural Applications. in Evolution of Refractory Metals and Alloys, (TMS, Warrendale, 1993), pp. 85–108.

    Google Scholar 

  5. P. Hu, F. Yang, J. Deng, T. Chang, B. Hu, J. Tan, K. Wang, W. Cao, P. Feng, and H. Yu, Journal of Alloys and Compounds 711, 2017 (64–70). https://doi.org/10.1016/j.jallcom.2017.03.346.

    Article  CAS  Google Scholar 

  6. K. Wang, J. Tan, P. Hu, Z. Yu, F. Yang, B. Hu, R. Song, H. He, and A. A. Volinsky, Materials Science and Engineering: A 636, 2015 (415–420). https://doi.org/10.1016/j.msea.2015.03.114.

    Article  CAS  Google Scholar 

  7. F. C. Campell, Elements of Metallurgy and Engineering Alloys, (ASM International, Ohio, USA, 2008).

    Book  Google Scholar 

  8. ASTM Standard B-387-10, Specification for Molybdenum and Molybdenum Alloy Bar, Rod, and Wire, (ASTM International, West Conshohocken, 2010). https://doi.org/10.1520/B0387-10.

    Book  Google Scholar 

  9. J. Fan, M. Lu, H. Cheng, J. Tian, and B. Huang, International Journal of Refractory Metals and Hard Materials 27, 2009 (78–82). https://doi.org/10.1016/j.ijrmhm.2008.03.006.

    Article  CAS  Google Scholar 

  10. S. Majumdar, I. G. Sharma, S. Raveendra, I. Samajdar, and P. Bhargava, Materials Science and Engineering: A 492, 2008 (211–217). https://doi.org/10.1016/j.msea.2008.03.020.

    Article  CAS  Google Scholar 

  11. G. Leichtfried, Landolt-Börnstein 2A, 2000 (12–23). https://doi.org/10.1007/b83029.

    Article  Google Scholar 

  12. H. A. Calderon, G. Kostorz, and G. Ullrich, Materials Science and Engineering: A 160, 1993 (189–199). https://doi.org/10.1016/0921-5093(93)90447-M.

    Article  Google Scholar 

  13. R. Ohser-wiedemann, C. Weck, U. Martin, A. Müller, and H. J. Seifert, International Journal of Refractory Metals and Hard Materials 32, 2012 (1–6). https://doi.org/10.1016/j.ijrmhm.2011.12.001.

    Article  CAS  Google Scholar 

  14. M. Nagae, T. Yoshio, J. Takada, and Y. Hiraoka, Materials Transactions 46, 2005 (2129–2134). https://doi.org/10.2320/matertrans.46.2129.

    Article  CAS  Google Scholar 

  15. P. Hu, F. Yang, R. Song, K. Wang, and B. Hu, Journal of Alloys and Compounds 686, 2016 (1037–1043). https://doi.org/10.1016/j.jallcom.2016.06.183.

    Article  CAS  Google Scholar 

  16. H. J. Shi, L. S. Niu, C. Korn, and G. Pluvinage, Journal of Nuclear Materials 278, 2000 (328–333). https://doi.org/10.1016/S0022-3115(99)00240-8.

    Article  CAS  Google Scholar 

  17. A. S. Ulrich and M. C. Galetz, Oxidation of Metals 86, 2016 (511–535). https://doi.org/10.1007/s11085-016-9650-z.

    Article  CAS  Google Scholar 

  18. S. P. Chakraborty, International Journal of Refractory Metals and Hard Materials 29, 2011 (623–630). https://doi.org/10.1016/j.ijrmhm.2011.04.010.

    Article  CAS  Google Scholar 

  19. G. R. Smolik, D. A. Petti, and S. T. Schuetz, Journal of Nuclear Materials 283–287, 2000 (1458–1462). https://doi.org/10.1016/S0022-3115(00)00303-2.

    Article  Google Scholar 

  20. J. S. Park, J. M. Kim, S. H. Cho, Y. I. I. Son, and D. Kim, Materials Transactıons 54, 2013 (1517–1523). https://doi.org/10.2320/matertrans.M2013065.

    Article  CAS  Google Scholar 

  21. F. Yang, K. Wang, P. Hu, H. He, X. Kang, H. Wang, R. Liu, and A. A. Volinsky, Journal of Alloys and Compounds 593, 2014 (196–201).

    Article  CAS  Google Scholar 

  22. E. S. Jones, J. F. Mosher, R. Speiser, and J. W. Spetnak, Corrosion Association of Corrosion Engineers 14, 1958 (20–26). https://doi.org/10.5006/0010-9312-14.1.20.

    Article  Google Scholar 

  23. N. Floquet, O. Bertrand, and J. J. Heizmann, Oxidation of Metals 37, 1992 (253–280).

    Article  CAS  Google Scholar 

  24. P. Zhang, X. Guo, C. Zhang, Q. Tao, and C. Shen, International Journal of Refractory Metals and Hard Materials 67, 2017 (32–39). https://doi.org/10.1016/j.ijrmhm.2017.04.008.

    Article  CAS  Google Scholar 

  25. S. Majumdar, Surface and Coatings Technology 206, 2012 (3393–3398). https://doi.org/10.1016/j.surfcoat.2012.01.062.

    Article  CAS  Google Scholar 

  26. S. Majumdar and I. G. Sharma, Intermetallics 19, 2011 (541–545). https://doi.org/10.1016/j.intermet.2010.12.002.

    Article  CAS  Google Scholar 

  27. P. Zhang, X. Guo, X. Ren, Z. Chen, and C. Shen, Intermetallics 93, 2018 (134–140). https://doi.org/10.1016/j.intermet.2017.12.002.

    Article  CAS  Google Scholar 

  28. J. Liu, Q. Gong, Y. Shao, D. Zhuang, and J. Liang, Applied Surface Science 308, 2014 (261–268). https://doi.org/10.1016/j.apsusc.2014.04.148.

    Article  CAS  Google Scholar 

  29. Y. Wang, D. Wang, and J. Yan, Journal of Alloys and Compounds 589, 2014 (384–388). https://doi.org/10.1016/j.jallcom.2013.12.023.

    Article  CAS  Google Scholar 

  30. K. Choi, Y. Kim, M. Kim, S. Lee, S. Lee, and J. Park, Coatings 8, 2018 (218). https://doi.org/10.3390/coatings8060218.

    Article  CAS  Google Scholar 

  31. P. Zhang, C. Chen, Z. Chen, X. Ren, C. Shen, and P. Feng, Ceramics International 45, 2019 (4290–4297). https://doi.org/10.1016/j.ceramint.2018.11.103.

    Article  CAS  Google Scholar 

  32. Y. Liu, W. Shao, C. Wang, and C. Zhou, Journal of Alloys and Compounds 735, 2018 (2247–2255). https://doi.org/10.1016/j.jallcom.2017.11.339.

    Article  CAS  Google Scholar 

  33. N. Nomura, T. Suzuki, K. Yoshimi, and S. Hanada, Intermetallics 11, 2003 (735–742). https://doi.org/10.1016/S0966-9795(03)00069-4.

    Article  CAS  Google Scholar 

  34. B. Yavas and G. Goller, International Journal of Refractory Metals and Hard Materials 78, 2019 (273–281). https://doi.org/10.1016/j.ijrmhm.2018.10.006.

    Article  CAS  Google Scholar 

  35. S. V. Konovalikhin, D. Y. Kovalev, and V. I. Ponomarev, High Temperature 56, 2018 (668–672). https://doi.org/10.1134/S0018151X18050140.

    Article  CAS  Google Scholar 

  36. R. Berkouch, S. Valette, J. Absi, and P. Lefort, Journal of the European Ceramic Society 2018. https://doi.org/10.1016/j.jeurceramsoc.2018.01.004.

    Article  Google Scholar 

  37. Y. Wang, J. Yan, and D. Wang, International Journal of Refractory Metals and Hard Materials 68, 2017 (60–64). https://doi.org/10.1016/j.ijrmhm.2017.06.008.

    Article  CAS  Google Scholar 

  38. J. Park, J. M. Kim, S. Lee, and J. S. Park, The Physics of Metals and Metallography 115, 2014 (1351–1355). https://doi.org/10.1134/s0031918x14130213.

    Article  Google Scholar 

  39. M. Z. Alam, B. Venkataraman, B. Sarma, and D. K. Das, Journal of Alloys and Compounds 487, 2009 (335–340). https://doi.org/10.1016/j.jallcom.2009.07.141.

    Article  CAS  Google Scholar 

  40. J. Kim, T. Ha, J. Park, and H. Kim, Transactions of Nonferrous Metals Society of China 26, 2016 (2603–2608). https://doi.org/10.1016/S1003-6326(16)64386-8.

    Article  CAS  Google Scholar 

  41. S. A. Kuznetsov, S. V. Kuznetsova, E. V. Rebrov, M. J. M. Mies, M. H. J. M. de Croon, and J. C. Schouten, Surface and Coatings Technology 195, 2005 (182–188). https://doi.org/10.1016/j.surfcoat.2004.05.021.

    Article  CAS  Google Scholar 

  42. S. P. Chakraborty, S. Banerjee, I. G. Sharma, and A. K. Suri, Journal of Nuclear Materials 403, 2010 (152–159). https://doi.org/10.1016/j.jnucmat.2010.06.014.

    Article  CAS  Google Scholar 

  43. B. Yavas and G. Goller, International Journal of Refractory Metals and Hard Materials 58, 2016 (182–188). https://doi.org/10.1016/j.ijrmhm.2016.04.020.

    Article  CAS  Google Scholar 

  44. J. Sik, J. Min, and Y. I. Son, International Journal of Refractory Metals and Hard Materials 41, 2013 (110–114). https://doi.org/10.1016/j.ijrmhm.2013.02.011.

    Article  CAS  Google Scholar 

  45. H. O. Pierson, Materials Science 1996. https://doi.org/10.1016/b978-081551392-6.50007-6.

    Article  Google Scholar 

  46. C. Piconi, Bioinert Ceramics: Zirconia and Alumina. in Handbook of Bioceramics and Biocomposites, (Springer, Cham, 2016), pp. 59–89. https://doi.org/10.1007/978-3-319-12460-5_4.

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported by Scientific Research Project Funds of Istanbul Technical University (Project Number: MDK-2017-40670). The authors thank H.H. Sezer for his contribution in SEM studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gultekin Goller.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yavas, B., Goller, G. Functional Design to Protect TZM Alloy Against Oxidation. Oxid Met 95, 389–407 (2021). https://doi.org/10.1007/s11085-021-10027-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-021-10027-w

Keywords

Navigation