Skip to main content
Log in

Microbiomes in forensic botany: a review

  • Review
  • Published:
Forensic Science, Medicine and Pathology Aims and scope Submit manuscript

Abstract

Fragments of botanical material can often be found at crime scenes (on live and dead bodies, or on incriminating objects) and can provide circumstantial evidence on various aspects of forensic investigations such as determining crime scene locations, times of death or possession of illegal species. Morphological and genetic analysis are the most commonly applied methods to analyze plant fragment evidence but are limited by their low capacity to differentiate between potential source locations, especially at local scales. Here, we review the current applications and limitations of current plant fragment analysis for forensic investigations and introduce the potential of microbiome analysis to complement the existing forensic plant fragment analysis toolkit. The potential for plant fragment provenance identification at geographic scales meaningful to forensic investigations warrants further investigation of the phyllosphere microbiome in this context. To that end we identify three key areas of future research: 1) Retrieval of microbial DNA of sufficient quality and quantity from botanical material; 2) Variability of the phyllosphere microbiome at different taxonomic and spatial scales, with explicit reference to assignment capacity; 3) Impacts on assignment capacity of time, seasonality and movement of fragments between locations. The development of robust microbiome analysis tools for forensic purposes in botanical material could increase the evidentiary value of the botanical evidence commonly encountered in casework, aiding in the identification of crime scene locations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aquila I, Ausania F, Di Nunzio C, Serra A, Boca S, Capelli A, et al. The role of forensic botany in crime scene investigation: Case report and review of literature. J Forensic Sci. 2014;59:820–4.

    Article  PubMed  Google Scholar 

  2. Coyle HM, Ladd C, Palmbach T, Lee HC. The green revolution: botanical contributions to forensics and drug enforcement. Croat Med J. 2001;42:340–5.

    Google Scholar 

  3. Coyle HM, Lee CL, Lin WY, Lee HC, Palmbach TM. Forensic botany: using plant evidence to aid in forensic death investigation. Croat Med J. 2005;46:606–12.

    Google Scholar 

  4. Lane MA, Anderson LC, Barkley TM, Bock JH, Gifford EM, Hall DW, et al. Forensic botany. BioSci. 1990;40:34–9.

    Google Scholar 

  5. Aquila I, Gratteri S, Sacco MA, Ricci P. The role of forensic botany in solving a case: scientific evidence on the falsification of a crime scene. J Forensic Sci. 2018;63:961–4.

    Article  PubMed  Google Scholar 

  6. Ferri G, Alù M, Corradini B, Angot A, Beduschi G. Land plants identification in forensic botany: Multigene barcoding approach. Forensic Sci Int-Genet. 2008;1:593–5.

    Article  Google Scholar 

  7. Ferri G, Corradini B, Ferrari F, Santunione AL, Palazzoli F, Alu M. Forensic botany II, DNA barcode for land plants: which markers after the international agreement? Forensic Sci Int-Genet. 2015;15:131–6.

    Article  CAS  PubMed  Google Scholar 

  8. Srivastava T, Wu M, Kakhnovich J, Waithaka B, Lents NH. A three-locus, PCR-based method for forensic identification of plant material. J Forensic Sci. 2018;63:1252–60.

    Article  CAS  PubMed  Google Scholar 

  9. Ward J, Gilmore SR, Robertson J, Peakall R. A grass molecular identification system for forensic botany: a critical evaluation of the strengths and limitations. J Forensic Sci. 2009;54:1254–60.

    Article  CAS  PubMed  Google Scholar 

  10. Zaya DN, Ashley MV. Plant genetics for forensic applications. In: Sucher NJ, Hennell JR, Carles MC, editors. Plant DNA fingerprinting and barcoding: Methods and protocols. Totowa, NJ: Humana Press; 2012. p. 35–52.

    Chapter  Google Scholar 

  11. Craft KJ, Owens JD, Ashley MV. Application of plant DNA markers in forensic botany: genetic comparison of Quercus evidence leaves to crime scene trees using microsatellites. Forensic Sci Int. 2007;165:64–70.

    Article  CAS  PubMed  Google Scholar 

  12. Cardoso HF, Santos A, Dias R, Garcia C, Pinto M, Sergio C, et al. Establishing a minimum postmortem interval of human remains in an advanced state of skeletonization using the growth rate of bryophytes and plant roots. Int J Legal Med. 2010;124:451–6.

    Article  CAS  PubMed  Google Scholar 

  13. Coyle HM. Forensic botany : principles and applications to criminal casework. Boca Raton, FL: CRC Press; 2005.

    Google Scholar 

  14. Chandra R, Vinny S. Forensic botany: An emerging discipline of plant sciences. Indian Botanist Blog-o-Journal. 2014. http://www.indianbotanists.com/2014/03/forensic-botany-emerging-discipline-of.html.

  15. Lancia M, Conforti F, Aleffi M, Caccianiga M, Bacci M, Rossi R. The use of Leptodyctium riparium (Hedw.) warnst in the estimation of minimum postmortem interval. J Forensic Sci. 2013;58:S239–42.

  16. Ferri G, Alù M, Corradini B, Beduschi G. Forensic botany: species identification of botanical trace evidence using a multigene barcoding approach. Int J Legal Med. 2009;123:395–401.

    Article  PubMed  Google Scholar 

  17. Honjo M, Ueno S, Tsumura Y, Handa T, Washitani I, Ohsawa R. Tracing the origins of stocks of the endangered species Primula sieboldii using nuclear microsatellites and chloroplast DNA. Conserv Genet. 2008;9:1139–47.

    Article  CAS  Google Scholar 

  18. Alotaibi SS, Sayed SM, Alosaimi M, Alharthi R, Banjar A, Abdulqader N, et al. Pollen molecular biology: Applications in the forensic palynology and future prospects: a review. Saudi J Biol Sci. 2020;27:1185–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chesson LA, Barnette JE, Bowen GJ, Brooks JR, Casale JF, Cerling TE, et al. Applying the principles of isotope analysis in plant and animal ecology to forensic science in the Americas. Oecologia. 2018;187:1077–94.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Green FM, Salter TL, Stokes P, Gilmore IS, O’Connor G. Ambient mass spectrometry: advances and applications in forensics. Surf Interface Anal. 2010;42:347–57.

    Article  CAS  Google Scholar 

  21. Mulligan CC, Talaty N, Cooks RG. Desorption electrospray ionization with a portable mass spectrometer: in situ analysis of ambient surfaces. Chem Commun. 2006;16:1709–11.

    Article  Google Scholar 

  22. Takáts Z, Wiseman JM, Cooks RG. Ambient mass spectrometry using desorption electrospray ionization (DESI): instrumentation, mechanisms and applications in forensics, chemistry, and biology. J Mass Spectrom. 2005;40:1261–75.

    Article  PubMed  Google Scholar 

  23. Novotny M, Lee ML, Low C-E, Raymond A. Analysis of marijuana samples from different origins by high-resolution gas-liquid chromatography for forensic application. Anal Chem. 1976;48:24–9.

    Article  CAS  PubMed  Google Scholar 

  24. Dilcher DL. Forensic botany: Case studies in the use of plant anatomy. Phytomorphology. 2001;53:181–4.

    Google Scholar 

  25. Ferri G, Corradini B, Ferrari F, Santunione AL, Palazzoli F, Alu’ M. Forensic botany II, DNA barcode for land plants: which markers after the international agreement? Forensic Sci Int Genet. 2015;15:131–6.

  26. Koopman WJM, Kuiper I, Klein-Geltink DJA, Sabatino GJH, Smulders MJM. Botanical DNA evidence in criminal cases: Knotgrass (Polygonum aviculare L.) as a model species. Forensic Sci Int Genet. 2012;6:366–74.

  27. Mishra P, Kumar A, Nagireddy A, Mani DN, Shukla AK, Tiwari R, et al. DNA barcoding: an efficient tool to overcome authentication challenges in the herbal market. Plant Biotechnol J. 2016;14:8–21.

    Article  CAS  PubMed  Google Scholar 

  28. Nybom H, Weising K, Rotter B. DNA fingerprinting in botany: past, present, future. Investig Genet. 2014;5:1.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Margiotta G, Bacaro G, Carnevali E, Severini S, Bacci M, Gabbrielli M. Forensic botany as a useful tool in the crime scene: Report of a case. J Forensic Legal Med. 2015;34:24–8.

    Article  Google Scholar 

  30. Casale J, Casale E, Collins M, Morello D, Cathapermal S, Panicker S. Stable isotope analyses of heroin seized from the merchant vessel Pong Su. J Forensic Sci. 2006;51:603–6.

    Article  CAS  PubMed  Google Scholar 

  31. West JB, Hurley JM, Dudás FÖ, Ehleringer JR. The stable isotope ratios of marijuana. II. Strontium isotopes relate to geographic origin. J Forensic Sci. 2009;54:1261–9.

  32. Ehleringer JR, Cooper DA, Lott MJ, Cook CS. Geo-location of heroin and cocaine by stable isotope ratios. Forensic Sci Int. 1999;106:27–35.

    Article  CAS  Google Scholar 

  33. Kurashima N, Makino Y, Sekita S, Urano Y, Nagano T. Determination of origin of ephedrine used as precursor for illicit methamphetamine by carbon and nitrogen stable isotope ratio analysis. Anal Chem. 2004;76:4233–6.

    Article  CAS  PubMed  Google Scholar 

  34. Lesiak AD, Cody RB, Dane AJ, Musah RA. Plant seed species identification from chemical fingerprints: A high-throughput application of direct analysis in real time mass spectrometry. Anal Chem. 2015;87:8748–57.

    Article  CAS  PubMed  Google Scholar 

  35. Espinoza EO, Wiemann MC, Barajas-Morales J, Chavarria GD, McClure PJ. Forensic analysis of CITES-protected Dalbergia timber from The Americas. IAWA J. 2015;36:311.

    Article  Google Scholar 

  36. Evans PD, Mundo IA, Wiemann MC, Chavarria GD, McClure PJ, Voin D, et al. Identification of selected CITES-protected Araucariaceae using DART TOFMS. IAWA J. 2017;38:266.

    Article  Google Scholar 

  37. McClure PJ, Chavarria GD, Espinoza E. Metabolic chemotypes of CITES protected Dalbergia timbers from Africa, Madagascar, and Asia. Rapid Commun Mass Spectrom. 2015;29:783–8.

    Article  CAS  PubMed  Google Scholar 

  38. Bell KL, de Vere N, Keller A, Richardson RT, Gous A, Burgess KS, et al. Pollen DNA barcoding: current applications and future prospects. Genome. 2016;59:629–40.

    Article  PubMed  Google Scholar 

  39. Bell KL, Burgess KS, Okamoto KC, Aranda R, Brosi BJ. Review and future prospects for DNA barcoding methods in forensic palynology. Forensic Sci Int Genet. 2016;21:110–6.

    Article  CAS  PubMed  Google Scholar 

  40. Young JM, Rawlence NJ, Weyrich LS, Cooper A. Limitations and recommendations for successful DNA extraction from forensic soil samples: a review. Sci Justice. 2014;54:238–44.

    Article  PubMed  Google Scholar 

  41. Staats M, Arulandhu AJ, Gravendeel B, Holst-Jensen A, Scholtens I, Peelen T, et al. Advances in DNA metabarcoding for food and wildlife forensic species identification. Anal Bioanal Chem. 2016;408:4615–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Coghlan ML, Haile J, Houston J, Murray DC, White NE, Moolhuijzen P, et al. Deep sequencing of plant and animal DNA contained within traditional chinese medicines reveals legality issues and health safety concerns. PLOS Genet. 2012;8:e1002657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Štambuk S, Sutlović D, Bakarić P, Petričević S, Anđelinović Š. Forensic botany: potential usefulness of microsatellite-based genotyping of Croatian olive (Olea europaea L.) in forensic casework. Croat Med J. 2007;48:556.

  44. Li X, Yang Y, Henry RJ, Rossetto M, Wang Y, Chen S. Plant DNA barcoding: from gene to genome. Biol Rev. 2015;90:157–66.

    Article  PubMed  Google Scholar 

  45. Kress WJ, Wurdack KJ, Zimmer EA, Weigt LA, Janzen DH. Use of DNA barcodes to identify flowering plants. Proc Natl Acad Sci USA. 2005;102:8369.

    Article  CAS  PubMed  Google Scholar 

  46. Baldwin BG, Markos S. Phylogenetic utility of the external transcribed spacer (ETS) of 18S–26S rDNA: Congruence of ETS and ITS trees of Calycadenia (Compositae). Mol Phylogenet Evol. 1998;10:449–63.

    Article  CAS  PubMed  Google Scholar 

  47. Feliner GN, Rosselló JA. Better the devil you know? Guidelines for insightful utilization of nrDNA ITS in species-level evolutionary studies in plants. Mol Phylogenet Evol. 2007;44:911–9.

    Article  Google Scholar 

  48. Yao H, Song J, Liu C, Luo K, Han J, Li Y, et al. Use of ITS2 region as the universal DNA barcode for plants and animals. PloS One. 2010;5:e13102.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Dormontt EE, van Dijk K-J, Bell KL, Biffin E, Breed MF, Byrne M, et al. Advancing DNA barcoding and metabarcoding applications for plants requires systematic analysis of herbarium collections—An Australian perspective. Front Ecol Evol. 2018;6(134). https://doi.org/10.3389/fevo.2018.00134.

  50. Ganopoulos I, Bazakos C, Madesis P, Kalaitzis P, Tsaftaris A. Barcode DNA high-resolution melting (Bar-HRM) analysis as a novel close-tubed and accurate tool for olive oil forensic use. J Sci Food Agric. 2013;93:2281–6.

    Article  CAS  PubMed  Google Scholar 

  51. Paranaiba RTF, Carvalho CBV, Freitas JM, Fassio LH, Botelho ÉD, Neves DBJ, et al. Forensic botany and forensic chemistry working together: application of plant DNA barcoding as a complement to forensic chemistry—a case study in Brazil. Genome. 2019;62:11–8.

    Article  CAS  PubMed  Google Scholar 

  52. Santos C, Pereira F. Identification of plant species using variable length chloroplast DNA sequences. Forensic Sci Int Genet. 2018;36:1–12.

    Article  CAS  PubMed  Google Scholar 

  53. Yoon CK. Forensic science - Botanical witness for the prosecution. Science. 1993;260:894–5.

    Article  CAS  PubMed  Google Scholar 

  54. Vieira MLC, Santini L, Diniz AL, Munhoz CdF. Microsatellite markers: what they mean and why they are so useful. Genet Mol Biol. 2016;39:312–28.

  55. Mauro Sander F, Mariot RF, Avila E, Clarice Sampaio A, Valdir Marcos S, Flávio Anastácio de Oliveira C. 13-loci STR multiplex system for Brazilian seized samples of marijuana: individualization and origin differentiation. Int J Legal Med. 2019;133:373–84.

  56. Mason AS. SSR Genotyping. In: Batley J, editor. Plant genotyping: Methods and protocols. Methods in molecular biology. New York, NY: Springer; 2015. pp. 77–89.

  57. Särkinen T, Staats M, Richardson JE, Cowan RS, Bakker FT. How to open the treasure chest? Optimising DNA extraction from herbarium specimens. PLOS One. 2012;7:e43808.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Phillips ML. Crime scene genetics: transforming forensic science through molecular technologies. BioSci. 2008;58:484–9.

    Article  Google Scholar 

  59. Sobrino B, Brión M, Carracedo A. SNPs in forensic genetics: a review on SNP typing methodologies. Forensic Sci Int. 2005;154:181–94.

    Article  CAS  PubMed  Google Scholar 

  60. Dormontt EE, Boner M, Braun B, Breulmann G, Degen B, Espinoza E, et al. Forensic timber identification: It’s time to integrate disciplines to combat illegal logging. Biol Conserv. 2015;191:790–8.

    Article  Google Scholar 

  61. Budowle B, van Daal A. Forensically relevant SNP classes. BioTechniques. 2008;44:603–10.

    Article  CAS  PubMed  Google Scholar 

  62. Gardiner A. Graeme Thorne's abduction after father's huge lottery win shocked Australia in 1960s Trials of the Century. 2012. The Herald Sun. https://www.heraldsun.com.au/news/law-order/graeme-thornes-abduction-after-fathers-huge-lottery-win-shocked-australia-in-1960s-trials-of-the-century-/news-story/bedcbd0b1304c4f47bbf5dedd7e8d2fb. Accessed 22 May 2019.

  63. Pitt H. Graeme Thorne Kidnapping. The Sydney Morning Herald. 2019. https://www.smh.com.au/national/nsw/graeme-thorne-tragedy-the-crime-that-haunts-sydney-still-20190704-p52481.html. Accessed 22 May 2019.

  64. Gitzendanner MA. Use and guidelines for plant DNA analyses in forensics. In: Hall DW, Byrd JH, editors. Forensic Botany: A practical guide. Chichester, UK: John Wiley & Sons; 2012. p. 103–4.

    Google Scholar 

  65. Thompson K. Why plants can be the key to solving crimes. The Telegraph. 2013. https://www.telegraph.co.uk/gardening/plants/9915133/Why-plants-can-be-the-key-to-solving-crimes.html. Accessed 22 May 2019.

  66. Peterson J, Garges S, Giovanni M, McInnes P, Wang L, Schloss JA, et al. The NIH human microbiome project. Genome Res. 2009;19:2317–23.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Lindow SE, Brandl MT. Microbiology of the phyllosphere. Appl Environ Microbiol. 2003;69:1875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Copeland JK, Yuan L, Layeghifard M, Wang PW, Guttman DS. Seasonal community succession of the phyllosphere microbiome. Mol Plant Microbe Interact. 2015;28:274–85.

    Article  CAS  PubMed  Google Scholar 

  69. Lax S, Smith DP, Hampton-Marcell J, Owens SM, Handley KM, Scott NM, et al. Longitudinal analysis of microbial interaction between humans and the indoor environment. Science. 2014;345:1048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gibbons SM, Schwartz T, Fouquier J, Mitchell M, Sangwan N, Gilbert JA, et al. Ecological succession and viability of human-associated microbiota on restroom surfaces. Appl Environ Microbiol. 2015;81:765.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Barberán A, Henley J, Fierer N, Casamayor EO. Structure, inter-annual recurrence, and global-scale connectivity of airborne microbial communities. Sci Total Environ. 2014;487:187–95.

    Article  PubMed  Google Scholar 

  72. Clarke TH, Gomez A, Singh H, Nelson KE, Brinkac LM. Integrating the microbiome as a resource in the forensics toolkit. Forensic Sci Int Genet. 2017;30:141–7.

    Article  CAS  PubMed  Google Scholar 

  73. Callahan BJ, Sankaran K, Fukuyama JA, McMurdie PJ, Holmes SP. Bioconductor workflow for microbiome data analysis: from raw reads to community analyses. F1000Res. 2017;5:1492.

  74. Metcalf JL, Xu ZZ, Bouslimani A, Dorrestein P, Carter DO, Knight R. Microbiome tools for forensic science. Trends Biotechnol. 2017;35:814–23.

    Article  CAS  PubMed  Google Scholar 

  75. Kembel SW, Jones E, Kline J, Northcutt D, Stenson J, Womack AM, et al. Architectural design influences the diversity and structure of the built environment microbiome. ISME J. 2012;6:1469–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Young JM, Austin JJ, Weyrich LS. Soil DNA metabarcoding and high-throughput sequencing as a forensic tool: considerations, potential limitations and recommendations. FEMS Microbiol Ecol. 2016;93:fiw207.

  77. Young JM, Weyrich LS, Cooper A. Forensic soil DNA analysis using high-throughput sequencing: A comparison of four molecular markers. Forensic Sci Int Genet. 2014;13:176–84.

    Article  CAS  PubMed  Google Scholar 

  78. Kitano T, Umetsu K, Tian W, Osawa M. Two universal primer sets for species identification among vertebrates. Int J Legal Med. 2007;121:423–7.

    Article  PubMed  Google Scholar 

  79. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol. 1994;3:294–9.

    CAS  PubMed  Google Scholar 

  80. Jesmok EM, Hopkins JM, Foran DR. Next-generation sequencing of the bacterial 16S rRNA gene for forensic soil comparison: A feasibility study. J Forensic Sci. 2016;61:607–17.

    Article  CAS  PubMed  Google Scholar 

  81. Metcalf JL, Xu ZZ, Weiss S, Lax S, Van Treuren W, Hyde ER, et al. Microbial community assembly and metabolic function during mammalian corpse decomposition. Science. 2016;351:158.

    Article  CAS  PubMed  Google Scholar 

  82. Pechal JL, Crippen TL, Benbow ME, Tarone AM, Dowd S, Tomberlin JK. The potential use of bacterial community succession in forensics as described by high throughput metagenomic sequencing. Int J Legal Med. 2014;128:193–205.

    Article  PubMed  Google Scholar 

  83. Metcalf JL, Wegener Parfrey L, Gonzalez A, Lauber CL, Knights D, Ackermann G, et al. A microbial clock provides an accurate estimate of the postmortem interval in a mouse model system. eLife. 2013;2:e01104.

  84. Finley SJ, Pechal JL, Benbow ME, Robertson BK, Javan GT. Microbial signatures of cadaver gravesoil during decomposition. Microb Ecol. 2016;71:524–9.

    Article  PubMed  Google Scholar 

  85. Hauther KA, Cobaugh KL, Jantz LM, Sparer TE, DeBruyn JM. Estimating time since death from postmortem human gut microbial communities. J Forensic Sci. 2015;60:1234–40.

    Article  PubMed  Google Scholar 

  86. Cobaugh KL, Schaeffer SM, DeBruyn JM. Functional and structural succession of soil microbial communities below decomposing human cadavers. PLOS One. 2015;10:e0130201.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Lee SY, Woo SK, Lee SM, Eom YB. Forensic analysis using microbial community between skin bacteria and fabrics. Toxicol Environ Health Sci. 2016;8:263–70.

    Article  Google Scholar 

  88. Lax S, Hampton-Marcell JT, Gibbons SM, Colares GB, Smith D, Eisen JA, et al. Forensic analysis of the microbiome of phones and shoes. Microbiome. 2015;3:21.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Meadow JF, Altrichter AE, Green JL. Mobile phones carry the personal microbiome of their owners. PeerJ. 2014;2:e447.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Habtom H, Pasternak Z, Matan O, Azulay C, Gafny R, Jurkevitch E. Applying microbial biogeography in soil forensics. Forensic Sci Int Genet. 2019;38:195–203.

    Article  CAS  PubMed  Google Scholar 

  91. Fløjgaard C, Frøslev TG, Brunbjerg AK, Bruun HH, Moeslund J, Hansen AJ, et al. Predicting provenance of forensic soil samples: Linking soil to ecological habitats by metabarcoding and supervised classification. PLOS One. 2019;14:e0202844.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Damaso N, Mendel J, Mendoza M, von Wettberg EJ, Narasimhan G, Mills D. Bioinformatics approach to assess the biogeographical patterns of soil communities: The utility for soil provenance. J Forensic Sci. 2018;63:1033–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Young JM, Weyrich LS, Breen J, Macdonald LM, Cooper A. Predicting the origin of soil evidence: High throughput eukaryote sequencing and MIR spectroscopy applied to a crime scene scenario. Forensic Sci Int. 2015;251:22–31.

    Article  CAS  PubMed  Google Scholar 

  94. Hampton-Marcell JT, Lopez JV, Gilbert JA. The human microbiome: an emerging tool in forensics. Microb Biotechnol. 2017;10:228–30.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Young JM, Linacre A. Massively parallel sequencing is unlocking the potential of environmental trace evidence. Forensic Sci Int Genet. 2021;50:102393.

    Article  CAS  PubMed  Google Scholar 

  96. Rossmann M, Sarango-Flores SW, Chiaramonte JB, Kmit MCP, Mendes R. Plant microbiome: Composition and Functions in Plant Compartments. In: Pylro V, Roesch L, editors. The Brazilian microbiome: Current status and perspectives. Cham: Springer International Publishing; 2017. p. 7–20.

    Chapter  Google Scholar 

  97. Morella NM, Weng FC-H, Joubert PM, Metcalf CJE, Lindow S, Koskella B. Successive passaging of a plant-associated microbiome reveals robust habitat and host genotype-dependent selection. Proc Natl Acad Sci. 2020;117:1148.

  98. Laforest-Lapointe I, Messier C, Kembel SW. Tree leaf bacterial community structure and diversity differ along a gradient of urban intensity. mSystems. 2017;2:e00087-17.

  99. Laforest-Lapointe I, Whitaker BK. Decrypting the phyllosphere microbiota: progress and challenges. Am J Bot. 2019;106:171–3.

    PubMed  Google Scholar 

  100. Thapa S, Prasanna R. Prospecting the characteristics and significance of the phyllosphere microbiome. Ann Microbiol. 2018;68:229–45.

    Article  CAS  Google Scholar 

  101. Andrews JH, Harris RF. The ecology and biogeography of microorganisms on plant surfaces. Annu Rev Phytopathol. 2000;38:145–80.

    Article  PubMed  Google Scholar 

  102. Kembel SW, O’Connor TK, Arnold HK, Hubbell SP, Wright SJ, Green JL. Relationships between phyllosphere bacterial communities and plant functional traits in a neotropical forest. Proc Natl Acad Sci. 2014;111:13715–20.

    Article  CAS  PubMed  Google Scholar 

  103. Laforest-Lapointe I, Messier C, Kembel SW. Host species identity, site and time drive temperate tree phyllosphere bacterial community structure. Microbiome. 2016a;4:27.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Laforest-Lapointe I, Messier C, Kembel SW. Tree phyllosphere bacterial communities: exploring the magnitude of intra- and inter-individual variation among host species. PeerJ. 2016b;4:e2367.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Beilsmith K, Thoen MPM, Brachi B, Gloss AD, Khan MH, Bergelson J. Genome-wide association studies on the phyllosphere microbiome: embracing complexity in host–microbe interactions. Plant J. 2019;97:164–81.

    Article  CAS  PubMed  Google Scholar 

  106. Vorholt JA. Microbial life in the phyllosphere. Nat Rev Microbiol. 2012;10:828.

    Article  CAS  PubMed  Google Scholar 

  107. Horton MW, Bodenhausen N, Beilsmith K, Meng D, Muegge BD, Subramanian S, et al. Genome-wide association study of Arabidopsis thaliana leaf microbial community. Nat Commun. 2014;5:5320.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Rogers TJ, Leppanen C, Brown V, Fordyce JA, LeBude A, Ranney T, et al. Exploring variation in phyllosphere microbial communities across four hemlock species. Ecosphere. 2018;9:11.

    Article  Google Scholar 

  109. Smee MR, Real-Ramirez I, Hendry TA. Insects as phyllosphere microbiome engineers: effects of aphids on a plant pathogen. bioRxiv. 2019:797738.

  110. Redford AJ, Bowers RM, Knight R, Linhart Y, Fierer N. The ecology of the phyllosphere: geographic and phylogenetic variability in the distribution of bacteria on tree leaves. Environ Microbiol. 2010;12:2885–93.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Campisano A, Albanese D, Yousaf S, Pancher M, Donati C, Pertot I. Temperature drives the assembly of endophytic communities’ seasonal succession. Environ Microbiol. 2017;19:3353–64.

    Article  PubMed  Google Scholar 

  112. Carvalho SD, Castillo JA. Influence of light on plant–phyllosphere interaction. Front Plant Sci. 2018;9:1482.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Budowle B, Connell ND, Bielecka-Oder A, Colwell RR, Corbett CR, Fletcher J, et al. Validation of high throughput sequencing and microbial forensics applications. Investig Genet. 2014;5:9.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Oldoni F, Podini D. Forensic molecular biomarkers for mixture analysis. Forensic Sci Int Genet. 2019;41:107–19.

    Article  CAS  PubMed  Google Scholar 

  115. Zhang Y, Pechal JL, Schmidt CJ, Jordan HR, Wang WW, Benbow ME, et al. Machine learning performance in a microbial molecular autopsy context: A cross-sectional postmortem human population study. PLOS One. 2019;14:e0213829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Oliveira M, Amorim A. Microbial forensics: new breakthroughs and future prospects. Appl Microbiol Biotechnol. 2018;102:10377–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kuiper I. Microbial forensics: next-generation sequencing as catalyst. EMBO Rep. 2016;17:1085–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Weyrich LS, Farrer AG, Eisenhofer R, Arriola LA, Young J, Selway CA, et al. Laboratory contamination over time during low-biomass sample analysis. Mol Ecol Resour. 2019;19:982–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Eisenhofer R, Minich JJ, Marotz C, Cooper A, Knight R, Weyrich LS. Contamination in low microbial biomass microbiome studies: Issues and recommendations. Trends Microbiol. 2019;27:105–17.

    Article  CAS  PubMed  Google Scholar 

  120. Heintz-Buschart A, Yusuf D, Kaysen A, Etheridge A, Fritz JV, May P, et al. Small RNA profiling of low biomass samples: identification and removal of contaminants. BMC Biol. 2018;16:11.

    Article  Google Scholar 

  121. Karstens L, Asquith M, Davin S, Fair D, Gregory WT, Wolfe AJ, et al. Controlling for contaminants in low biomass 16S rRNA gene sequencing experiments. mSystems. 2019;4:e00290-19.

  122. Wilkins D, Leung MHY, Lee PKH. Microbiota fingerprints lose individually identifying features over time. Microbiome. 2017;5:1.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Sarah Ishak wrote the main body of text and Dr Eleanor Dormontt and Dr Jennifer Young contributed substantially to editing.

Corresponding author

Correspondence to Sarah Ishak.

Ethics declarations

Conflicts of interests

The authors declare that there are no conflicts of interest with this review.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishak, S., Dormontt, E. & Young, J.M. Microbiomes in forensic botany: a review. Forensic Sci Med Pathol 17, 297–307 (2021). https://doi.org/10.1007/s12024-021-00362-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12024-021-00362-4

Keywords

Navigation