Skip to main content

Advertisement

Log in

Analysis on hot deformation and following cooling technology of 25Cr2Ni4MoVA steel

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The true stress–true strain curves of 25Cr2Ni4MoVA steel were obtained by uniaxial compression experiments at 850–1200 °C in the strain rate range of 0.001–10.0 s−1. And the dynamic continuous cooling transformation curves were obtained at the cooling rate range of 0.5–15.0 °C s−1 from the austenitization temperature of 1000 °C to the room temperature by pre-strain of 0.2 as well. The power dissipation map and the dynamic continuous cooling transformation diagram were constructed based on the data provided by these curves. Compared with the optical micrographs of the compressed samples, the full dynamic recrystallization region is located between 1000 and 1200 °C and at the strain rate range from 0.01 to 10.0 s−1 with the power dissipation efficiency not less than 0.33. In the full dynamic recrystallization region, the power dissipation efficiency increases and the dynamic recrystallization activation energy decreases with the temperature increasing. With the strain rate decreasing, the power dissipation efficiency increases firstly and then starts to decrease as the strain rate is less than 0.1 s−1, and dynamic recrystallization activation energy changes on the contrary. According to the dynamic continuous cooling transformation diagram, slow cooling is a better way for the hot-deformed piece with large size or complex shape to avoid cracking as the temperature of the piece is lower than 400 °C, and different cooling ways can be used for the hot-deformed piece with small size and simple shapes to obtain certain microstructure and meet good compressive properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. S. Barella, M. Bellogini, M. Boniardi, S. Cincera, Eng. Fail. Anal. 18 (2011) 1511–1519.

    Article  Google Scholar 

  2. W.Z. Wang, P. Buhl, A. Klenk, Y.Z. Liu, Int. J. Fatigue 87 (2016) 471–483.

    Article  Google Scholar 

  3. M. Banaszkiewicz, Int. J. Fatigue 113 (2018) 311–323.

    Article  Google Scholar 

  4. Z.J. Zhou, S.Y. Sun, L. Zou, Y. Schneider, S. Schmauder, M, Wang, Fusion Eng. Des. 138 (2019) 175–182.

    Article  Google Scholar 

  5. W.J. Hui, H. Dong, M.Q. Wang, S.L. Chen, J. Shi, Y.Q. Weng, Acta Metall. Sin. 38 (2002) 1009–1014.

    Google Scholar 

  6. S.J. Li, M.Y. Sun, H.W. Liu, D.Z. Li, Acta Metall. Sin. 47 (2011) 946–953.

    Google Scholar 

  7. W.P. McNaughton, R.H. Richman, R.I. Jaffee, J. Mater. Eng. 13 (1991) 9–18.

    Article  Google Scholar 

  8. F.F. Liu, J.Y. Chen, J.X. Dong, M.C. Zhang, Z.H. Yao, Mater. Sci. Eng. A 651 (2016) 102–115.

    Article  Google Scholar 

  9. T. Reza, N. Abbas, S. Reza, J. Mater. Process. Technol. 196 (2008) 321–331.

    Article  Google Scholar 

  10. F. Chen, F.C. Ren, Z.S. Cui, X.M. Lai, J. Iron Steel Res. Int. 21 (2014) 521–526.

    Article  Google Scholar 

  11. L.Y. Ye, Y.W. Zhai, L.Y. Zhou, H.Z. Wang, P. Jiang, J. Manuf. Process. 59 (2020) 535–544.

    Article  Google Scholar 

  12. H.G. Du, D.Z. Fu, Austenite transformation curve of steel: principle, test and application, China Machine Press, Beijing, China, 1988.

    Google Scholar 

  13. F.L. Sui, Y. Zuo, J. Zhao, B.G. Ma, Acta Metall. Sin. (Eng. Lett.) 27 (2014) 494–500.

  14. Y.T. Wu, Y.C. Liu, C. Li, X.C. Xia, Y. Huang, H.J. Li, H.P. Wang, J. Alloy. Compd. 712 (2017) 687–695.

    Article  Google Scholar 

  15. S.M. Abbasi, A. Momeni, Y.C. Lin, H.R. Jafarian, Mater. Sci. Eng. A 665 (2016) 154–160.

    Article  Google Scholar 

  16. C. Zhang, L. Zhang, W. Shen, C. Liu, Y. Xia, R. Li, Mater. Des. 90 (2015) 804–814.

    Article  Google Scholar 

  17. N. Li, C.Z. Zhao, Z.H. Jiang, H.X. Zhang, Mater. Charact. 153 (2019) 224–233.

    Article  Google Scholar 

  18. Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark, D.R. Barker, Metall. Trans. A 15 (1984) 1883–1892.

    Article  Google Scholar 

  19. F.L. Sui, L.X. Xu, L.Q. Chen, X.H. Liu, J. Mater. Process. Technol. 211 (2011) 433–440.

    Article  Google Scholar 

  20. A. Mohamadizadeh, A. Zarei-Hanzaki, H.R. Abedi, S. Mehtonenb, D. Porter, Mater. Charact. 107 (2015) 293–301.

    Article  Google Scholar 

  21. W.L. Cheng, Y. Bai, S.C. Ma, L.F. Wang, H.X. Wang, H. Yu, J. Mater. Sci. Technol. 35 (2019) 1198–1209.

    Article  Google Scholar 

  22. W.J. Hui, N. Xiao, X.L. Zhao, Y.J. Zhang, Y.F. Wu, J. Iron Steel Res. Int. 24 (2017) 641–648.

    Article  Google Scholar 

  23. M. Gomez, L. Rancel, E. Escudero, S.F. Medina, J. Mater. Sci. Technol. 30 (2014) 511–516.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from the National Natural Science Foundation of China (General Project, Grant No. 51674004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng-li Sui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Su, Zh. & Sui, Fl. Analysis on hot deformation and following cooling technology of 25Cr2Ni4MoVA steel. J. Iron Steel Res. Int. 28, 1305–1314 (2021). https://doi.org/10.1007/s42243-021-00580-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-021-00580-8

Keywords

Navigation