Skip to main content
Log in

Improved Modeling Method for 3-Dimensional Woven Composites Using Weaving Parameters

  • Original Paper
  • Published:
International Journal of Aeronautical and Space Sciences Aims and scope Submit manuscript

Abstract

To model 3-Dimensional woven composites, the width and thickness of the yarn are generally used as input parameters. However, since these parameters can only be obtained after the composites are molded, it is not efficient in the initial stages of design using woven composites. Therefore, a geometric modeling method using weaving parameters that can be known before manufacturing is required. In this paper, geometric parameters such as thickness and width of each yarn are calculated using weaving parameters. From the obtained parameters, the cross section and path of the yarns and the unit cell are modeled. The method is validated by comparing the calculated geometric parameters and fiber volume fraction with direct measurements of the overall composite. Moreover, the unit cell is applied to an analytical method based on the iso-strain and iso-stress assumptions to evaluate the stiffness in the longitudinal and transverse directions. The mechanical properties are compared and verified with the specimen test results. We conclude that the present method is useful for the design of aerospace structures to which the 3-dimensional composite is applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Ansar M, Xinwei W, Couwei Z (2011) Modeling strategies of 3D Woven composites: a review. Compos Struct 93:1947–1963. https://doi.org/10.1016/j.compstruct.2011.03.010

    Article  Google Scholar 

  2. Marsh G (2012) Aero engines lose weight thanks to composites. Reinf Plast 56:32–35. https://doi.org/10.1016/S0034-3617(12)70146-7

    Article  Google Scholar 

  3. Nathan S (2015) Positive reinforcement: 21st century 3D weaving. The Engineer

  4. Luyker ED, Morestin F, Boisse P, Marsal D (2019) Simulation of 3D interlock composites preforming. Compos Struct 88:615–623. https://doi.org/10.1016/j.compstruct.2008.06.005

    Article  Google Scholar 

  5. Byun JH, Chou TW (1990) Elastic properties of three-dimensional angle-interlock fabric preforms. J Textile Inst 81:538–548. https://doi.org/10.1080/00405009008658727

    Article  Google Scholar 

  6. Naik RA, Jarmon DC, Logan CP (1998) Characterization and modeling of angle interlock woven composites (1998) 39th AIAA/ASME/ASCE/AHS/ACS Structures. Struct Dyn Mater Conf Exhibit. https://doi.org/10.2514/6.1998-1810

    Article  Google Scholar 

  7. Wu ZJ, Brown D, Davies JM (2002) An analytical modeling method for predicting the stiffness of 3-D orthotropic laminated fabric composites. Compos Struct 56:407–412. https://doi.org/10.1016/S0263-8223(02)00024-7

    Article  Google Scholar 

  8. Buchanan S, Grigorash A, Archer E, Quinn MA, Stewart JG (2010) Analytical elastic stiffness model for 3D woven orthogonal interlock composites. Compos Sci Technol 56:1597–1604. https://doi.org/10.1016/j.compscitech.2010.05.019

    Article  Google Scholar 

  9. Zhou Y, Wen W, Cui H (2020) Spatial modeling of 3D woven variable thickness composite plate at the mesoscopic scale. Compos Struct 239:1–9. https://doi.org/10.1016/j.compstruct.2020.111946

    Article  Google Scholar 

  10. Tan P, Long L, Steven GP (2000) Behavior of 3D orthogonal woven CFRP composites. Part II. FEA and analytical modeling approaches. Compos Part A 31:273–281. https://doi.org/10.1016/S1359-835X(99)00071-8

    Article  Google Scholar 

  11. Desplentere F, Lomov SV, Woerdeman DL, Verpoest I, Wevers M, Bogdanovich A (2005) Micro-CT characterization of variability in 3D textile architecture. Compos Sci Technol 65:1920–1930. https://doi.org/10.1016/j.compscitech.2005.04.008

    Article  Google Scholar 

  12. Green SD, Matveev MY, Long AC, Ivanov D, Hallett SR (2014) Mechanical modeling of 3D woven composites considering realistic unit cell geometry. Compos Struct 118:284–283. https://doi.org/10.1016/j.compstruct.2014.07.005

    Article  Google Scholar 

  13. Isart N, Mayugo JA, Blanco N, Ripoll L, Sola A, Soler M (2015) Geometric model for 3D through-thickness orthogonal interlock composites. Compos Struct 119:787–798. https://doi.org/10.1016/j.compstruct.2014.09.044

    Article  Google Scholar 

  14. Sherburn M (2007) Geometric and mechanical modeling of textiles. Doctoral Dissertation, University of Nottingham

  15. Lin H, Zeng X, Sherburn M, Long A, Clifford M (2011) Automated geometric modeling of textile structures. Text Res J 82:1689–1702. https://doi.org/10.1177/0040517511418562

    Article  Google Scholar 

  16. Dai S, Cunningham PR, Marshall S, Silva C (2015) Influence of fibre architecture on the tensile, compressive and flexural behavior of 3D woven composites. Compos Part A 69:195–207. https://doi.org/10.1016/j.compositesa.2014.11.012

    Article  Google Scholar 

  17. Umer R, Alhussein H, Zhou J, Cantwell WJ (2016) The mechanical properties of 3D woven composites. J Compos Mater 51:1703–1716. https://doi.org/10.1177/0021998316681187

    Article  Google Scholar 

  18. Wucher B, Hallstorm S, Dumas D, Pardoen T, Bailly C, Martiny PH, Lani F (2017) Nonconformal mesh based finite element strategy for 3D textile composites. J Compos Mater 51:2315–2330. https://doi.org/10.1177/0021998316669875

    Article  Google Scholar 

  19. Farrokh B, Segal KN, Ricks TM, Miller SG, Rodini BT, Sleight DS (2019) Uniaxial tensile properties of AS4 3D woven composites with four different resin systems: experimental results and analysis—property computations. In: NASA Technical Reports

  20. Yan S, Zeng X, Long A (2020) Effect of fibre architecture on tensile pull-off behavior of 3D woven composite T-joints. Compos Struct 242:1–9. https://doi.org/10.1016/j.compstruct.2020.112194

    Article  Google Scholar 

  21. Siddgonde N, Ghosh A (2020) Thermo-mechanical modeling of C/C 3D orthogonal and angle interlock woven fabric composites in high temperature environment. Mech Mater 148:1–14. https://doi.org/10.1016/j.mechmat.2020.103525

    Article  Google Scholar 

  22. Mehdikhani M, Gorbatikh L, Verpoest I, Lomov SV (2019) Voids in fiber-reinforced polymer composites: a review on their formation, characteristics, and effects on mechanical performance. J Compos Mater 53:1579–1669. https://doi.org/10.1177/0021998318772152

    Article  Google Scholar 

  23. Kreger AF, Teters GA (1980) Use of averaging methods to determine the viscoelastic properties of spatially reinforced composites. Mech Compos Mater 15:377–383. https://doi.org/10.1007/BF00605861

    Article  Google Scholar 

  24. Kalidindi SR, Franco E (1996) Longitudinal and transverse moduli and strengths of low angle 3-D braided composites. J Compos Mater 30:885–905. https://doi.org/10.1177/002199839603000802

    Article  Google Scholar 

  25. Kalidindi SR, Franco E (1997) Numerical evaluation of isostrain and weighted-average models for elastic moduli of three-dimensional composites. Compos Sci Technol 57:293–305. https://doi.org/10.1016/S0266-3538(96)00119-4

    Article  Google Scholar 

  26. Hallal A, Younes R, Fardoun F, Nehme S (2012) Improved analytical model to predict the effective elastic properties of 2.5D interlock woven fabrics composite. Compos Struct 94:3009–3028. https://doi.org/10.1016/j.compstruct.2012.03.019

    Article  Google Scholar 

  27. Chamis CC (1983) Simplified composite micromechanics equation for hygral thermal and mechanical properties. In: NASA Technical Memorandum 83320

  28. Rudov-Clark S, Mouritz AP, Lee L, Bannister MK (2003) Fibre damage in the manufacture of advanced three-dimensional woven composites. Compos Part A 34:963–970. https://doi.org/10.1016/S1359-835X(03)00213-6

    Article  Google Scholar 

  29. Mehdikhani M, Steensels E, Standaert A, Vallons K, Gorbatikh L, Lomov SV (2018) Multi-scale digital image correlation for detection and quantification ofmatrix cracks in carbon fiber composite laminates in the absence and presence of voids controlled by the cure cycle. Compos Part B 154:138–147. https://doi.org/10.1016/j.compositesb.2018.07.006

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported under the framework of Aerospace Technology Development Program (no. 10074270) funded by the Ministry of Trade, industry & Energy (MOTIE, Korea)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jungsun Park.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H., Park, J. Improved Modeling Method for 3-Dimensional Woven Composites Using Weaving Parameters. Int. J. Aeronaut. Space Sci. 22, 824–833 (2021). https://doi.org/10.1007/s42405-021-00365-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42405-021-00365-z

Keywords

Navigation