Skip to main content
Log in

Robust Adaptive Finite-Time Prescribed Performance Attitude Tracking Control of Spacecraft

  • Original Paper
  • Published:
International Journal of Aeronautical and Space Sciences Aims and scope Submit manuscript

Abstract

In this paper, a novel adaptive fast nonsingular terminal sliding mode (FNTSM) control approach is proposed for the robust adaptive finite-time prescribed performance attitude tracking control of spacecraft subject to inertia uncertainties, external disturbances, and input saturation. First, a simple error transformation is introduced to guarantee the attitude tracking errors always stay within the predefined performance bounds. Then, a FNTSM surface is presented based on the transformed attitude tracking errors. Finally, an adaptive FNTSM controller is designed by using the adaptive updating law to estimate the square of the norm of the lumped uncertain term. Rigorous theoretical analysis for the practical finite-time stability of the resulting closed-loop system is provided. The proposed adaptive FNTSM controller can guarantee the attitude tracking errors converge to the arbitrarily small region about zero in finite time within the predefined performance bounds. Benefiting from the adaptive estimation technique, the proposed adaptive FNTSM controller is continuous and the unexpected chattering phenomenon is significantly reduced. Moreover, the prior knowledge on the upper bound of the lumped uncertain term is no longer needed in the control design. Simulation experiments illustrate the effectiveness and superiority of the proposed control approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wen JT-Y, Kreutz-Delgado K (1991) The attitude control problem. IEEE Trans Autom Control 36(10):1148–1162

    Article  MathSciNet  MATH  Google Scholar 

  2. Tsiotras P (1998) Further passivity results for the attitude control problem. IEEE Trans Autom Control 43(11):1597–1600

    Article  MathSciNet  MATH  Google Scholar 

  3. Choi Y, Bang H (2007) Dynamic control allocation for shaping spacecraft attitude control command. Int J Aeronaut Space Sci 8(1):10–20

    Article  Google Scholar 

  4. Su Y, Zheng C (2011) Globally asymptotic stabilization of spacecraft with simple saturated proportional-derivative control. J Guid Control Dyn 34(6):1932–1935

    Article  Google Scholar 

  5. Bang H, Kim J, Jun Y (2019) Spacecraft attitude control compensating internal payload motion using disturbance observer technique. Int J Aeronaut Space Sci 20(2):459–466

    Article  Google Scholar 

  6. Schaub H, Akella MR, Junkins JL (2001) Adaptive control of nonlinear attitude motions realizing linear closed loop dynamics. J Guid Control Dyn 24(1):95–100

    Article  Google Scholar 

  7. Chen Z, Huang J (2009) Attitude tracking and disturbance rejection of rigid spacecraft by adaptive control. IEEE Trans Autom Control 54(3):600–605

    Article  MathSciNet  MATH  Google Scholar 

  8. Shahrooei A, Kazemi MH (2018) Multiple model adaptive attitude control of LEO satellite with angular velocity constraints. Int J Aeronaut Space Sci 19(1):153–163

    Article  Google Scholar 

  9. Lo S-C, Chen Y-P (1995) Smooth sliding-mode control for spacecraft attitude tracking maneuvers. J Guid Control Dyn 18(6):1345–1349

    Article  MATH  Google Scholar 

  10. Yeh F-K (2010) Sliding-mode adaptive attitude controller design for spacecraft with thrusters. IET Control Theory Appl 4(7):1254–1264

    Article  Google Scholar 

  11. Wu S, Sun X-Y, Sun Z-W, Chen C-C (2011) Robust sliding mode control for spacecraft global fast-tracking manoeuvre. Proc Inst Mech Eng Part G J Aerosp Eng 225(7):749–760

    Article  Google Scholar 

  12. Zhu Z, Xia Y, Fu M (2011) Adaptive sliding mode control for attitude stabilization with actuator saturation. IEEE Trans Ind Electron 58(10):4898–4907

    Article  Google Scholar 

  13. Lu K, Xia Y, Zhu Z, Basin MV (2012) Sliding mode attitude tracking of rigid spacecraft with disturbances. J Frankl Inst 349(2):413–440

    Article  MathSciNet  MATH  Google Scholar 

  14. Kim K-S, Kim Y (2003) Robust backstepping control for slew maneuver using nonlinear tracking function. IEEE Trans Control Syst Technol 11(6):822–829

    Article  Google Scholar 

  15. Kristiansen R, Nicklasson PJ, Gravdahl JT (2009) Satellite attitude control by quaternion-based backstepping. IEEE Trans Control Syst Technol 17(1):227–232

    Article  Google Scholar 

  16. Ali I, Radice G, Kim J (2010) Backstepping control design with actuator torque bound for spacecraft attitude maneuver. J Guid Control Dyn 33(1):254–259

    Article  Google Scholar 

  17. Wu B, Wang D, Poh EK (2015) High precision satellite attitude tracking control via iterative learning control. J Guid Control Dyn 38(3):528–534

    Article  Google Scholar 

  18. Yao Q (2021) Robust adaptive iterative learning control for high-precision attitude tracking of spacecraft. J Aerosp Eng 34(1):04020108

    Article  Google Scholar 

  19. Bhat SP, Bernstein DS (2000) Finite-time stability of continuous autonomous systems. SIAM J Control Optim 38(3):751–766

    Article  MathSciNet  MATH  Google Scholar 

  20. Bhat SP, Bernstein DS (2005) Geometric homogeneity with applications to finite-time stability. Math Control Signals Syst 17(2):101–127

    Article  MathSciNet  MATH  Google Scholar 

  21. Du H, Li S (2012) Finite-time attitude stabilization for a spacecraft using homogeneous method. J Guid Control Dyn 35(3):740–748

    Article  Google Scholar 

  22. Su Y, Zheng C (2015) Simple nonlinear proportional-derivative control for global finite-time stabilization of spacecraft. J Guid Control Dyn 38(1):173–178

    Article  Google Scholar 

  23. Gui H, Jin L, Xu S (2015) Simple finite-time attitude stabilization laws for rigid spacecraft with bounded inputs. Aerosp Sci Technol 42:176–186

    Article  Google Scholar 

  24. Li S, Ding S, Li Q (2009) Global set stabilisation of the spacecraft attitude using finite-time control technique. Int J Control 82(5):822–836

    Article  MathSciNet  MATH  Google Scholar 

  25. Du H, Li S, Qian C (2011) Finite-time attitude tracking control of spacecraft with application to attitude synchronization. IEEE Trans Autom Control 56(11):2711–2717

    Article  MathSciNet  MATH  Google Scholar 

  26. Jiang B, Li C, Ma G (2017) Finite-time output feedback attitude control for spacecraft using “Adding a power integrator” technique. Aerosp Sci Technol 66:342–354

    Article  Google Scholar 

  27. Zhao L, Yu J, Yu H (2018) Adaptive finite-time attitude tracking control for spacecraft with disturbances. IEEE Trans Aerosp Electron Syst 54(3):1297–1305

    Article  Google Scholar 

  28. Jin E, Sun Z (2008) Robust controllers design with finite time convergence for rigid spacecraft attitude tracking control. Aerosp Sci Technol 12(4):324–330

    Article  MATH  Google Scholar 

  29. Li S, Wang Z, Fei S (2011) Comments on the paper: robust controllers design with finite time convergence for rigid spacecraft attitude tracking control. Aerosp Sci Technol 15(3):193–195

    Article  Google Scholar 

  30. Shao S, Zong Q, Tian B, Wang F (2017) Finite-time sliding mode attitude control for rigid spacecraft without angular velocity measurement. J Frankl Inst 354(12):4656–4674

    Article  MathSciNet  MATH  Google Scholar 

  31. Zou A-M, Kumar KD, Hou Z-G, Liu X (2011) Finite-time attitude tracking control for spacecraft using terminal sliding mode and Chebyshev neural network. IEEE Trans Syst Man Cybern Part B Cybern 41(4):950–963

    Article  Google Scholar 

  32. Zhu Z, Xia Y, Fu M (2011) Attitude stabilization of rigid spacecraft with finite-time convergence. Int J Robust Nonlinear Control 21(6):686–702

    Article  MathSciNet  MATH  Google Scholar 

  33. Lu K, Xia Y (2013) Adaptive attitude tracking control for rigid spacecraft with finite-time convergence. Automatica 49(12):3591–3599

    Article  MathSciNet  MATH  Google Scholar 

  34. Song Z, Li H, Sun K (2014) Finite-time control for nonlinear spacecraft attitude based on terminal sliding mode technique. ISA Trans 53(1):117–124

    Article  Google Scholar 

  35. Lu K, Xia Y, Yu C, Liu H (2016) Finite-time tracking control of rigid spacecraft under actuator saturations and faults. IEEE Trans Autom Sci Eng 13(1):368–381

    Article  Google Scholar 

  36. Han Z, Zhang K, Yang T, Zhang M (2016) Spacecraft fault-tolerant control using adaptive non-singular fast terminal sliding mode. IET Control Theory Appl 10(16):1991–1999

    Article  MathSciNet  Google Scholar 

  37. Hu Q, Shao X (2016) Smooth finite-time fault-tolerant attitude tracking control for rigid spacecraft. Aerosp Sci Technol 55:144–157

    Article  Google Scholar 

  38. Bechlioulis CP, Rovithakis GA (2008) Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance. IEEE Trans Autom Control 53(9):2090–2099

    Article  MathSciNet  MATH  Google Scholar 

  39. de Ruiter AHJ (2013) Spacecraft attitude tracking with guaranteed performance bounds. J Guid Control Dyn 36(4):1214–1221

    Article  Google Scholar 

  40. de Ruiter AHJ (2016) Observer-based adaptive spacecraft attitude control with guaranteed performance bounds. IEEE Trans Autom Control 61(10):3146–3151

    Article  MathSciNet  MATH  Google Scholar 

  41. Bustan D, Sani SKH, Pariz N (2014) Adaptive fault-tolerant spacecraft attitude control design with transient response control. IEEE/ASME Trans Mechatron 19(4):1404–1411

    Article  Google Scholar 

  42. Hu Q, Shao X, Guo L (2018) Adaptive fault-tolerant attitude tracking control of spacecraft with prescribed performance. IEEE/ASME Trans Mechatron 23(1):331–341

    Article  Google Scholar 

  43. Zhang C, Ma G, Sun Y, Li C (2019) Prescribed performance adaptive attitude tracking control for flexible spacecraft with active vibration suppression. Nonlinear Dyn 96(3):1909–1926

    Article  Google Scholar 

  44. Shao X, Hu Q, Shi Y, Jiang B (2020) Fault-tolerant prescribed performance attitude tracking control for spacecraft under input saturation. IEEE Trans Control Syst Technol 28(2):574–582

    Article  Google Scholar 

  45. Wang C, Guo L, Wen C, Hu Q, Qiao J (2020) Event-triggered adaptive attitude tracking control for spacecraft with unknown actuator faults. IEEE Trans Ind Electron 67(3):2241–2250

    Article  Google Scholar 

  46. Yao Q (2020) Adaptive finite-time sliding mode control design for finite-time fault-tolerant trajectory tracking of marine vehicles with input saturation. J Frankl Inst 357(18):13593–13619

    Article  MathSciNet  MATH  Google Scholar 

  47. Zuo Z (2015) Nonsingular fixed-time consensus tracking for second-order multi-agent networks. Automatica 54:305–309

    Article  MathSciNet  MATH  Google Scholar 

  48. Ning B, Han Q-L, Zuo Z, Jin J, Zheng J (2018) Collective behaviors of mobile robots beyond the nearest neighbor rules with switching topology. IEEE Trans Cybern 48(5):1577–1590

    Article  Google Scholar 

  49. Zuo Z, Han Q-L, Ning B, Ge X, Zhang X-M (2018) An overview of recent advances in fixed-time cooperative control of multiagent systems. IEEE Trans Ind Inform 14(6):2322–2334

    Article  Google Scholar 

  50. Zuo Z, Han Q-L, Ning B (2019) An explicit estimate for the upper bound of the settling time in fixed-time leader-following consensus of high-order multivariable multiagent systems. IEEE Trans Ind Electron 66(8):6250–6259

    Article  Google Scholar 

  51. Ding L, Han Q-L, Ning B, Yue D (2020) Distributed resilient finite-time secondary control for heterogeneous battery energy storage systems under denial-of-service attacks. IEEE Trans Ind Inform 16(7):4909–4919

    Article  Google Scholar 

  52. Ning B, Han Q-L, Lu Q (2020) Fixed-time leader-following consensus for multiple wheeled mobile robots. IEEE Trans Cybern 50(10):4381–4392

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qijia Yao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Q. Robust Adaptive Finite-Time Prescribed Performance Attitude Tracking Control of Spacecraft. Int. J. Aeronaut. Space Sci. 22, 1183–1193 (2021). https://doi.org/10.1007/s42405-021-00368-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42405-021-00368-w

Keywords

Navigation