Skip to main content
Log in

Metal-Enhanced Photosensitization of Singlet Oxygen (ME1O2) from Brominated Carbon Nanodots on Silver Nanoparticle Substrates

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The deleterious effects of reactive oxygen species (ROS), including singlet oxygen (1O2), on biological systems have cultivated widespread interest in fields ranging from therapeutic techniques to sterilization materials. Researchers have, for example, sought to capitalize on the oxidative damage from singlet oxygen to treat tumors as well as to kill antibiotic resistant bacteria. To generate 1O2 in a controllable manner, photosensitizers are optimized to generate 1O2 from ground state oxygen (3O2) when excited by light. When considering applications of photosensitization, favorable properties include high 1O2 yield, low synthetic complexity, and minimal cost. Previously, studies have shown that plasmonic nanoparticles are able to amplify the photosensitization of 1O2 from small molecule photosensitizers in a mechanism similar to metal-enhanced fluorescence (MEF), thereby improving yield. A recent study from our lab has demonstrated that brominated carbon nanodots, which are an inexpensive and simple-to-collect as a hydrocarbon combustion byproduct, generate reactive oxygen species that can be used for antimicrobial photodynamic inactivation of bacteria. Herein we investigate the combination of these advantageous properties. Using the turn-on fluorescent probe Singlet Oxygen Sensor Green™ to detect 1O2, we report the metal-enhanced photosensitization of 1O2 by brominated dots in silvered Quanta Plate™ wells. These results provide a promising direction for the potential optimization of carbon nanodot-based agents in light-activated antimicrobial materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

source used in photosensitization of the dots

Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

MEF :

– Metal-enhanced fluorescence

MEP:

–Metal-enhanced phosphorescence

ME1O2 :

–Metal-enhanced (photosensitization/generation of) singlet oxygen

BrCND:

–Brominated carbon nanodots (brominated dots)

SOSG™:

–Singlet Oxygen Sensor Green™

ROS:

–Reactive oxygen species

1O2 :

–Singlet oxygen

3O2 :

–Ground state (triplet) oxygen

APDI:

–Antimicrobial photodynamic inactivation of bacteria

References

  1. Mróz P, Hamblin MR (2008) Advances in photodynamic therapy: basic, translational, and clinical. Artech House Series Engineering in Medicine & Biology. Boston: Artech House, Inc

  2. Vázquez-Ortega F, Lagunes I, Trigos Á (2020) Cosmetic dyes as potential photosensitizers of singlet oxygen generation. Dyes Pigm 176. https://doi.org/10.1016/j.dyepig.2020.108248

  3. Hu W, Lin Y, Zhang X-F, Feng M, Zhao S, Zhang J (2019) Heavy-atom-free charge transfer photosensitizers: tuning the efficiency of BODIPY in singlet oxygen generation via intramolecular electron donor-acceptor interaction. Dyes Pigm 164:139–147. https://doi.org/10.1016/j.dyepig.2019.01.019

    Article  CAS  Google Scholar 

  4. Xian-Fu Z, Xudong Y, Baomin X (2017) PET-based bisBODIPY photosensitizers for highly efficient excited triplet state and singlet oxygen generation: tuning photosensitizing ability by dihedral angles. Phys Chem Chem Phys 19(36):24792–24804. https://doi.org/10.1039/c7cp02645e

    Article  CAS  Google Scholar 

  5. Zhang Y, Aslan K, Previte MJR, Geddes CD (2008) Plasmonic engineering of singlet oxygen generation. PNAS 105(6):1798–1802. https://doi.org/10.1073/pnas.0709501105

    Article  PubMed  PubMed Central  Google Scholar 

  6. Geddes CD, Karolin J (2013) Metal-enhanced fluorescence based excitation volumetric effect of plasmon-enhanced singlet oxygen and super oxide generation. Phys Chem Chem Phys 15(38):15740–15745

    Article  Google Scholar 

  7. Zhang Y, Aslan K, Previte MJ, Geddes CD (2007) Metal-enhanced singlet oxygen generation: a consequence of plasmon enhanced triplet yields. J Fluoresc 4:345–349

    Article  Google Scholar 

  8. Zhang Y, Aslan K, Previte MJR, Geddes CD (2007) Metal-enhanced superoxide generation: a consequence of plasmon-enhanced triplet yields. Applied Physics Letters 91. https://doi.org/10.1063/1.2753718

  9. Aslan K, Geddes CD (2010) Metal-enhanced fluorescence: progress towards a unified plasmon-fluorophore description. In: Geddes CD (ed) Metal-Enhanced Fluorescence. John Wiley & Sons, Inc., Hoboken, New Jersey, pp 1–23

    Google Scholar 

  10. Karolin JO, Geddes CD (2012) Reduced lifetimes are directly correlated with excitation irradiance in metal-enhanced fluorescence (MEF). J Fluoresc 22(6):1659–1662

    Article  CAS  Google Scholar 

  11. Dragan AI, Geddes CD (2012) Metal-enhanced fluorescence: the role of quantum yield, Q0, in enhanced fluorescence. Appl Phys Lett 100(9):093115. https://doi.org/10.1063/1.3692105

    Article  CAS  Google Scholar 

  12. Jeong Y, Kook Y-M, Lee K, Koh W-G (2018) Metal enhanced fluorescence (MEF) for biosensors: general approaches and a review of recent developments. Biosens Bioelectron 111:102–116. https://doi.org/10.1016/j.bios.2018.04.007

    Article  CAS  PubMed  Google Scholar 

  13. Dragan AI, Geddes CD (2011) Excitation volumetric effects (EVE) in metal-enhanced fluorescence. Phys Chem Chem Phys 13(9):3831–3838

    Article  CAS  Google Scholar 

  14. Zhang Y, Aslan K, Previte MJR, Malyn SN, Geddes CD (2006) Metal-enhanced phosphorescence: interpretation in terms of triplet-coupled radiating plasmons. J Phys Chem B 110(49):25108–25114. https://doi.org/10.1021/jp065261v

    Article  CAS  PubMed  Google Scholar 

  15. Zhang Y, Aslan K, Malyn SN, Geddes CD (2006) Metal-enhanced phosphorescence (MEP). Chem Phys Lett 427:432–437. https://doi.org/10.1016/j.cplett.2006.06.078

    Article  CAS  Google Scholar 

  16. Knoblauch R, Ra E, Geddes CD (2019) Heavy carbon nanodots 2: plasmon amplification in Quanta PlateTM wells and the correlation with the synchronous scattering spectrum. Phys Chem Chem Phys 21(3):1254–1259. https://doi.org/10.1039/c8cp06299d

    Article  CAS  PubMed  Google Scholar 

  17. Mishra H, Mali BL, Karolin J, Dragan AI, Geddes CD (2013) Experimental and theoretical study of the distance dependence of metal-enhanced fluorescence, phosphorescence and delayed fluorescence in a single system. Phys Chem Chem Phys 15:19538–19544

    Article  CAS  Google Scholar 

  18. Qi-Long Y, Gozin M, Feng-Qi Z, Cohen A, Si-Ping P (2016) Highly energetic compositions based on functionalized carbon nanomaterials. Nanoscale 8(9):4799–4851. https://doi.org/10.1039/c5nr07855e

    Article  Google Scholar 

  19. Hong GS, Diao SO, Antaris AL, Dai HJ (2015) Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chem Rev 115(19):10816–10906

    Article  CAS  Google Scholar 

  20. Kumar P, Bohidar H (2012) Physical and fluorescent characteristics of non-functionalized carbon nanoparticles from candle soot. J Nanopart Res 14(7):1–10. https://doi.org/10.1007/s11051-012-0948-8

    Article  CAS  Google Scholar 

  21. TripathiSonker KA, Sonkar S, Sarkar S (2014) Pollutant soot of diesel engine exhaust transformed to carbon dots for multicoloured imaging of E. coli and sensing cholesterol. RSC Adv 57:30100–30107

    Google Scholar 

  22. Sun Y-P, Zhou B, Lin Y, Wang W, Fernando KAS, Pathak P et al (2006) Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc 128(24):7756–7757

    Article  CAS  Google Scholar 

  23. Tao S, Lu S, Geng Y, Zhu S, Redfern SAT, Song Y et al (2018) Design of metal-free polymer carbon dots: a new class of room-temperature phosphorescent materials. Angew Chem 130(9):2417–2422. https://doi.org/10.1002/ange.201712662

    Article  Google Scholar 

  24. Knoblauch R, Bui B, Raza A, Geddes CD (2018) Heavy carbon nanodots: a new phosphorescent carbon nanostructure. Phys Chem Chem Phys 20(22):15518–15527. https://doi.org/10.1039/c8cp02675k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li Q, Zhou M, Yang M, Yang Q, Zhang Z, Shi J (2018) Induction of long-lived room temperature phosphorescence of carbon dots by water in hydrogen-bonded matrices. Nat Commun 9(1):734–734. https://doi.org/10.1038/s41467-018-03144-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Schmitz RD, Knoblauch R, Ra E, Geddes CD (2019) Alpha-fluorescence (αS1) from thermally stable carbon nanodots. Chem Phys Lett 721:123–128

    Article  CAS  Google Scholar 

  27. Liu J, Wang N, Yu Y, Yan Y, Zhang H, Li J et al (2017) Carbon dots in zeolites: a new class of thermally activated delayed fluorescence materials with ultralong lifetimes. Sci Adv 3(5):e1603171. https://doi.org/10.1126/sciadv.1603171

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sarkar S, Gandla D, Venkatesh Y, Bangal P, Ghosh S, Yang Y et al (2016) Graphene quantum dots from graphite by liquid exfoliation showing excitation-independent emission, fluorescence upconversion and delayed fluorescence. Royal Society of Chemistry, Great Britain, p 21278

    Google Scholar 

  29. Jiang K, Wang Y, Li Z, Lin H (2020) Afterglow of carbon dots: mechanism, strategy and applications. Mat Chem Front 4:386–399

    Article  CAS  Google Scholar 

  30. Knoblauch R, Harvey A, Ra E, Greenberg KM, Lau J, Hawkins E et al (2021) Antimicrobial carbon nanodots: photodynamic inactivation and dark toxicity effects on bacteria by brominated carbon nanodots. Nanoscale 13(1):85–99. https://doi.org/10.1039/D0NR06842J

    Article  CAS  PubMed  Google Scholar 

  31. Klonis N, Sawyer WH (1996) Spectral properties of the prototropic forms of fluorescein in aqueous solution. J Fluoresc 6(3):147–157

    Article  CAS  Google Scholar 

  32. Knoblauch R, Geddes CD (2019) Reviews of advances in metal-enhanced fluorescence. In: Geddes CD (ed) Reviews in Plasmonics 2017. Springer Nature, Switzerland, pp 253–283

    Chapter  Google Scholar 

  33. Strobbia P, Languirand E, Cullum BM (2015) Recent advances in plasmonic nanostructures for sensing: a review. Opt Eng 54(10):100902. https://doi.org/10.1117/1.OE.54.10.100902

    Article  Google Scholar 

  34. Zhang Y, Aslan K, Previte MJR, Geddes CD (2008) Metal-enhanced excimer (P-type) fluorescence. Chem Phys Lett 458:147–151. https://doi.org/10.1016/j.cplett.2008.04.083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sabatini CA, Pereira RV, Gehlen MH (2007) Fluorescence modulation of acridine and coumarin dyes by silver nanoparticles. J Fluoresc 17:377–382. https://doi.org/10.1007/s10895-007-0204-2

    Article  CAS  PubMed  Google Scholar 

  36. Saion E, Gharibshahi E, Naghavi K (2013) Size-Controlled and optical properties of monodispersed silver nanoparticles synthesized by the radiolytic reduction method. Int J Mol Sci 14(4):7880–7896. https://doi.org/10.3390/ijms14047880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dragan AI, Mali B, Geddes CD (2013) Wavelength-dependent metal-enhanced fluorescence using synchronous spectral analysis. Chem Phys Lett 556:168–172. https://doi.org/10.1016/j.cplett.2012.11.035

    Article  CAS  Google Scholar 

  38. Chen Y, Munechika K, Ginger DS (2007) Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles. Nano Lett 7:690–696. https://doi.org/10.1021/nl062795z

    Article  CAS  PubMed  Google Scholar 

  39. Ragas X, Jimenez-Banzo A, Sanchez-Garcia D, Batllori X, Nonell S (2009) Singlet oxygen photosensitisation by the fluorescent probe Singlet Oxygen Sensor Green. Chem Commun 20:2920–2922

    Article  Google Scholar 

  40. Kim S, Fujitsuka M, Majima T (2013) Photochemistry of Singlet Oxygen Sensor Green. J Phys Chem B 117(45):13985–13992

    Article  CAS  Google Scholar 

  41. Gollmer A, Arnbjerg J, Blaikie FH, Pedersen BW, Breitenbach T, Daasbjerg K et al (2011) Singlet Oxygen Sensor Green®: photochemical behavior in solution and in a mammalian cell. Photochem Photobiol 87(3):671–679. https://doi.org/10.1111/j.1751-1097.2011.00900.x

    Article  CAS  PubMed  Google Scholar 

  42. Liu H, Carter PJH, Laan AC, Eelkema R, Denkova AG (2019) Singlet Oxygen Sensor Green is not a suitable probe for 1O2 in the presence of ionizing radiation. Sci Rep 9(1):8393. https://doi.org/10.1038/s41598-019-44880-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Knoblauch R, Moskowitz J, Hawkins E, Geddes CD (2020) Fluorophore-induced plasmonic current: generation-based detection of singlet oxygen. ACS Sensors 5:1223–1229

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Science Foundation Graduate Research Fellowship Program (2018262827) and the HHS/NIH/National Institute of General Medical Sciences (NIGMS) through the Chemistry/Biology Interface Program at the University of Maryland Baltimore County (5T32GM066706). The authors also received internal funding from the Institute of Fluorescence (IoF) as well as the Department of Chemistry and Biochemistry at the University of Maryland Baltimore County (UMBC).

Author information

Authors and Affiliations

Authors

Contributions

All experiments were designed, executed, plotted, and analyzed by Rachael Knoblauch under the mentorship of Prof. Chris D. Geddes. All experiments were conducted, and data exported and archived with the assistance of Amanda Harvey. The manuscript was written by Rachael Knoblauch, edited by Prof. Chris D. Geddes.

Corresponding author

Correspondence to Chris D. Geddes.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knoblauch, R., Harvey, A. & Geddes, C.D. Metal-Enhanced Photosensitization of Singlet Oxygen (ME1O2) from Brominated Carbon Nanodots on Silver Nanoparticle Substrates. Plasmonics 16, 1765–1772 (2021). https://doi.org/10.1007/s11468-021-01438-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-021-01438-1

Keywords

Navigation