Skip to main content
Log in

Cold Atmospheric Plasma Elicits Neuroprotection Against Glutamate Excitotoxicity by Activating Cellular Antioxidant Defense

  • Review Article
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Neuroprotection is critical to rescue injured neural tissues and prevent secondary injuries but current clinical neuroprotection options are alarmingly limited. Following neural injury, reactive oxygen species (ROS) are aberrantly accumulated due to overactivation of glutamate, a major neurotransmitter in the vertebrate nervous system, leading to massive neural cell death. Antioxidant defense of neuronal cells is inherently repressed and poorly compensated by current pharmacological antioxidants. Here, we explore whether cold atmospheric plasma (CAP) with its ROS tuned near their physiological concentrations may be neuroprotective. Using a neural cell model, we show that a single treatment of a helium CAP jet for 4–10 s induces a pulsed elevation by 220% of reduced glutathione, the main ROS-scavenging system in cells, and substantially increase the viability of glutamate-damaged cells, demonstrating neuroprotection against glutamate excitotoxicity. By correlating peroxynitrite, hydrogen peroxide and nitric oxide produced by CAP to literature evidence of their neuroprotective activity when acting alone, we suggest that micromolar-level peroxynitrite and 30–70-µM hydrogen peroxide produced from the CAP jet trigger their known and dose-dependent pathways for activating the cellular antioxidant defense. Collectively, our data show that CAP offers a novel and potentially potent strategy to neuroprotection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Collaborators GN (2019) Lancet Neurol 18(5):459–480

    Article  Google Scholar 

  2. Gooch CL, Pracht E, Borenstein AR (2017) Annals Neurol 81:479–484

    Article  Google Scholar 

  3. Kritis AA, Stamoula EG, Paniskaki KA, Vavilis TD (2015) Front Cell Neurosci 9: Art 91

  4. Lai TW, Zhang S, Wang YT (2014) Prog Neurobiol 115:157–188

    Article  CAS  Google Scholar 

  5. Andrabi SA, Kang HC, Haince JF, Lee YI, Zhang J, Chi Z, West AB, Koehler RC, Poirier GG, Dawson TM, Dawson VL (2011) Nat Med 17(6):692–699

    Article  CAS  Google Scholar 

  6. Ahuja CS, Nori S, Tetreault L, Wilson J, Kwon B, Harrop J, Choi D, Fehlings MG (2017) Neurosurgery 80:S9–S22

    Article  Google Scholar 

  7. Badhiwala JH, Ahuja CS, Fehlings MG (2019) J Neurosurg 30:1–18

    Google Scholar 

  8. Bowers CA, Kundu B, Hawryluk GW (2016) Neural Regen Res 11:882–885

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Trachootham D, Alexandre J, Huang P (2009) Nat Rev Drug Discov 8:579–591

    Article  CAS  Google Scholar 

  10. Kwon BK, Okon E, Hillyer J, Mann C, Baptiste D, Weaver LC, Fehlings MG, Tetzlaff W (2011) J Neurotrauma 28:1545–1588

    Article  Google Scholar 

  11. Bains M, Hall ED (2012) Biochim Biophys Acta 1822:675–684

    Article  CAS  Google Scholar 

  12. Donovan J, Kirshblum S (2018) Neurotherapeutics 15:654–668

    Article  Google Scholar 

  13. Griffin JM, Bradke F (2020) EMBO Mol Med 2020:e11505

    Google Scholar 

  14. Calabrese V, Mancuso C, Calvani M, Rizzarelli E, Butterfield DA, Stella AMG (2007) Nat Rev Neurosci 8:766–775

    Article  CAS  Google Scholar 

  15. Kong MG, Kroesen G, Morfill G, Nosenko T, Shimizu T, Dijk JV, Zimmermann JL (2009) New J Phys 11:115012

    Article  Google Scholar 

  16. Chen C, Li F, Chen H-L, Kong MG (2017) J Phys D Appl Phys 50:445208

    Article  Google Scholar 

  17. Rowland JW, Hawryluk GWJ, Kwon B, Fehlings MG (2008) Neurosurg Focus 25:E2

    Article  Google Scholar 

  18. Yu L, Wang N, Zhang Y, Wang Y, Li J, Wu Q, Liu Y (2014) Neurochem Int 70:10–21

    Article  CAS  Google Scholar 

  19. Trujillo KA, Akil H (1991) Science 251:85–87

    Article  CAS  Google Scholar 

  20. Sies H, Jones DP (2020) Nat Rev Mol Cell Biol 21:363–383

    Article  CAS  Google Scholar 

  21. Shih AY, Erb H, Murphy TH (2007) J Neurochem 101:109–119

    Article  CAS  Google Scholar 

  22. Gorbanev Y, O’Connell D, Checik V (2016) Chem Eur J 22:3496–3505

    Article  CAS  Google Scholar 

  23. Jin X-G, Chen S-R, Cao X-H, Li L, Pan H-L (2011) J Biol Chem 286:33190–33202

    Article  CAS  Google Scholar 

  24. Chen SR, Jin XG, Pan HL (2017) Neuropharmacology 125:156–165

    Article  CAS  Google Scholar 

  25. Zhou M-H, Vavencoffe A, Pan H-L (2015) J Biol Chem 290:30616–30623

    Article  CAS  Google Scholar 

  26. Fernando R, Rodriguez-Pascual F, Miras-Portual MT, Torres M (1999) Br J Pharmacol 127:779–787

    Article  Google Scholar 

  27. Garcia-Nogales P, Almeida A, Bolanos JP (2003) J Biol Chem 278:864–874

    Article  CAS  Google Scholar 

  28. Estevez AG, Radi R, Barbeito L, Shin JT, Thompson JA, Beckman JS (1995) J Neurochem 65:1543–1550

    Article  CAS  Google Scholar 

  29. Raza H, John A, Brown EM, Benedict S, Kambal A (2008) Toxicol Appl Pharmacol 226:161–168

    Article  CAS  Google Scholar 

  30. Zhou Q, Fu X, Wang X, Wu Q, Lu Y, Shi Klaunig JE, Zhou S (2018) Toxicology 394:45–53

    Article  CAS  Google Scholar 

  31. Fernandez-Gomez FJ, Gomez-Lazaro M, Pastor D, Calvo S, Aguirre N, Galindo MF, Jordan J (2005) Neurobiol Dis 20:384–391

    Article  CAS  Google Scholar 

  32. Wilson C, Gonzelez-Billault C (2015) Front Cell Neurosci 9:381

    Article  Google Scholar 

  33. Yan X, Meng Z, Ouyang J, Qiao Y, Li J, Jia M, Yuan F, Ostrikov K (2018) J Phys D Appl Phys 51:085401

    Article  Google Scholar 

  34. Yan X, Zhang C, Ouyang J, Shi Z, Chen Y, Han R, Zhang W, Yuan F, Ostrikov K (2020) Plasma Process Polym 17:e2000063

    Article  Google Scholar 

  35. Minnerup J, Sutherland BA, Buchan AM, Kleinschnitz C (2012) Int J Mol Sci 13:11753–11772

    Article  CAS  Google Scholar 

  36. Bell KFS, Al-Mubarak B, Martel M-A, McKay S, Wheelan N et al (2015) Nat Commun 6:7066

    Article  CAS  Google Scholar 

  37. Bayliss DL, Walsh JL, Shama G, Iza F, Kong MG (2009) New J Phys 11:115024

    Article  Google Scholar 

  38. Karakas E, Munyanyi A, Greene L, Laroussi M (2010) Appl Phys Lett 97:143702

    Article  Google Scholar 

  39. Szili EJ, Hong S-H, Oh J-S, Gaur N, Short RD (2018) Trend Biotechnol 36:594–602

    Article  CAS  Google Scholar 

  40. Reina MA, Lopez-Garcia A, Dittmann M, de Andres JA (1996) Rev Esp Anestesiol Reanim 43:135–137

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Miao Tian, Hailan Chen or Michael G. Kong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, M., Qi, M., Liu, Z. et al. Cold Atmospheric Plasma Elicits Neuroprotection Against Glutamate Excitotoxicity by Activating Cellular Antioxidant Defense. Plasma Chem Plasma Process 41, 945–954 (2021). https://doi.org/10.1007/s11090-021-10172-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-021-10172-9

Keywords

Navigation