Skip to main content

Advertisement

Log in

Single mode fiber-free space optic based hybrid \(32\times 2~\text{Gbps}\) WDM-PON architecture employing optical frequency comb source and polarization multiplexing

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

In this paper, we propose a cost-efficient single mode fiber-free space optics (SMF-FSO) based hybrid \(32 \times 2~\text{Gbps}\) wavelength division multiplexed passive optical network (WDM-PON) employing optical frequency comb (OFC) source and polarization multiplexing. OFC source is realized at optical line terminal (OLT) by modulating a single continuous wave (CW) laser source with radio frequency (RF) sinusoidal signal and dual-drive Mach–Zehnder modulator (DD-MZM). 16 coherent optical carriers are used to split into 32 x and y-orthogonal polarization states which are used to transmit the on-off keying (OOK) data of 32 channels to remotely located optical network units (ONUs). The performance of the channels is analyzed with bit error rate (BER) plots employing Gamma–Gamma (GG) FSO channel model at different turbulence regimes and lengths of FSO link. Moreover, the effect of varying the polarization mode dispersion (PMD) on BER is also evaluated. The cost of the proposed architecture is analyzed and compared with conventional PON architecture. The cost efficiency of the proposed architecture is demonstrated by the use of a single CW laser source to transmit the data of 32 users between remote node (RN) and ONUs through FSO links having reduced installation and maintenance costs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

Not applicable.

Code availability

Not applicable.Not applicable.

References

  1. Chen, Y., Li, J., Zhou, P., Zhu, P., Tian, Y., Wu, Z., Zhu, J., Liu, K., Ge, D., Chen, J., et al.: Mdm-tdm pon utilizing self-coherent detection-based olt and rsoa-based onu for high power budget. IEEE Photon. J. 8(3), 1–7 (2016)

    Google Scholar 

  2. Davey, R., Kani, J., Bourgart, F., McCammon, K.: Options for future optical access networks. IEEE Commun. Mag. 44(10), 50–56 (2006)

    Article  Google Scholar 

  3. Chatzi, S., Lazaro, J.A., Prat, J., Tomkos, I.: Techno-economic comparison of current and next generation long reach optical access networks. In: 9th Conference of Telecommunication, Media and Internet, IEEE pp. 1–6 (2010)

  4. Di Bartolo, S., Pizzoleo, A., Penna, S., Beleffi, G.T., Matera, F., Pompei, S.: Experimental demonstration of a gpon free space optical link for full duplex communications. In: 2014 Fotonica AEIT Italian Conference on Photonics Technologies. IEEE, pp. 1–3 (2014)

  5. Attygalle, M., Anderson, T., Hewitt, D., Nirmalathas, A.: Wdm passive optical network with subcarrier transmission and baseband detection scheme for laser-free optical network units. IEEE Photon. Technol. Lett. 18(11), 1279–1281 (2006)

    Article  ADS  Google Scholar 

  6. Mirza, J., Ghafoor, S., Hussain, A.: All-optical generation and transmission of multiple ultrawideband signals over free space optical link. Opt. Eng. 58(5), 056103 (2019)

    Article  ADS  Google Scholar 

  7. Khan, M.S., Ghafoor, S., Mirza, J., Zaidi, S.H.: Review of studies that integrate the free space optics with fiber optics. In: 2019 IEEE 16th International Conference on Smart Cities: Improving Quality of Life Using ICT & IoT and AI (HONET-ICT), IEEE, pp. 074–079 (2019)

  8. Bayaki, E., Schober, R., Mallik, R.K.: Performance analysis of free-space optical systems in gamma-gamma fading. In: Global Telecommunications Conference, IEEE GLOBECOM 2008, IEEE ,pp. 1–6 (2008)

  9. Miglani, R., Singh, M.: Performance evaluation of free space optical link using mid and far infrared wavelengths in turbulent atmospheric conditions. In: Fiber Optics in Access Network (FOAN), 4th International Workshop on IEEE, pp. 31–35 (2013)

  10. Shi, L., Chowdhury, P., Mukherjee, B.: Saving energy in long-reach broadband access networks: architectural approaches. IEEE Commun. Mag. 51(2), S16–S21 (2013)

    Article  Google Scholar 

  11. Tzanakaki, A., Anastasopoulos, M.P., Simeonidou, D.: Converged optical, wireless, and data center network infrastructures for 5g services. IEEE/OSA J. Opt. Commun. Netw. 11(2), A111–A122 (2019)

    Article  Google Scholar 

  12. Yeh, C., Chow, C.-W., Gu, C., Guo, B., Cheng, Y., Chen, J.: Performance analysis of free space optical communication traffic integrated with passive optical network. Electron. Lett. 54(21), 1228–1229 (2018)

    Article  ADS  Google Scholar 

  13. Murali, K.K., Madhan, M.G.: Vertical cavity surface emitting laser based hybrid fiber-free space optic link for passive optical network applications. Optik 171, 253–265 (2018)

    Article  ADS  Google Scholar 

  14. Mai, V.V., Pham, A.T.: Integrated fso, pon for broadband access networks: A comprehensive protocol stack design and analysis. In: IEEE Global Communications Conference (GLOBECOM), IEEE, pp. 1–7 (2015)

  15. Susanna, G., Di Bartolo, S., Carleo, D., Penna, S., Betti, S., Reale, A.: Weather influence on performance of a seamless free space optic (fso) link in a pon scenario. In: 2019 21st International Conference on Transparent Optical Networks (ICTON), IEEE, pp. 1–5 (2019)

  16. Optisystem overview. https://optiwave.com/optisystem-overview/

  17. Mirza, J., Hussain, A., Kanwal, B.: Characterization of shaping filter employed in all-optical generation of uwb pulses. In: 2018 International Conference on Applied and Engineering Mathematics (ICAEM), IEEE, pp. 12–17 (2018)

  18. Koyama, F., Iga, K.: Frequency chirping in external modulators. J. Lightwave Technol. 6(1), 87–93 (1988)

    Article  ADS  Google Scholar 

  19. Zhang, L., Song, Y., Zou, S., Li, Y., Ye, J., Lin, R.: Flat frequency comb generation based on mach-zehnder modulator and phase modulator. In: 2010 IEEE 12th International Conference on Communication Technology, IEEE, pp. 211–213 (2010)

  20. Ho, K.-P., Kahn, J.M.: Spectrum of externally modulated optical signals. J Lightwave Technol. 22(2), 658 (2004)

    Article  ADS  Google Scholar 

  21. Andrews, L.C., Phillips, R.L.: Laser Beam Propagation Through Random Media, vol. 152. SPIE Press, Bellingham (2005)

    Book  Google Scholar 

  22. Lee, E.J., Chan, V.W.: Part 1: Optical communication over the clear turbulent atmospheric channel using diversity. IEEE J. Sel. Areas Commun. 22(9), 1896–1906 (2004)

    Article  Google Scholar 

  23. Niu, M., Cheng, J., Holzman, J.F.: Exact error rate analysis of equal gain and selection diversity for coherent free-space optical systems on strong turbulence channels. Opt. Express 18(13), 13915–13926 (2010)

    Article  ADS  Google Scholar 

  24. Popoola, W.O., Ghassemlooy, Z.: Bpsk subcarrier intensity modulated free-space optical communications in atmospheric turbulence. J. Lightwave Technol. 27(8), 967–973 (2009)

    Article  ADS  Google Scholar 

  25. Song, X., Cheng, J.: Joint estimation of the lognormal-rician atmospheric turbulence model by the generalized method of moments. Opt. Commun. 285(24), 4727–4732 (2012)

    Article  ADS  Google Scholar 

  26. Al-Habash, A., Andrews, L.C., Phillips, R.L.: Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media. Opt. Eng. 40(8), 1554–1563 (2001)

    Article  ADS  Google Scholar 

  27. Wang, Z., Zhong, W.-D., Fu, S., Lin, C.: Performance comparison of different modulation formats over free-space optical (FSO) turbulence links with space diversity reception technique. IEEE Photon. J. 1(6), 277–285 (2009)

    Article  ADS  Google Scholar 

  28. Grover, A., Sheetal, A., Dhasarathan, V.: Performance analysis of mode division multiplexing based free space optics system incorporating on-off keying and polarization shift keying under dynamic environmental conditions. Wirel. Netw. 26, 3439–3449 (2020)

    Article  Google Scholar 

  29. Ahmed, K., Morra, A.E., Hranilovic, S.: Network planning of uplink all-optical passive fso/of c-ran fronthaul. J. Opt. Commun. Netw. 11(12), 600–612 (2019)

    Article  Google Scholar 

  30. Mirza, J., Ghafoor, S., Hussain, A.: All-optical 2r-regeneration and continuous wave to pulsed signal wavelength conversion based on fiber nonlinearity. Opt. Quantum Electron. 50(10), 366 (2018)

    Article  Google Scholar 

  31. Grobe, K., Roppelt, M., Autenrieth, A., Elbers, J.-P., Eiselt, M.: Cost and energy consumption analysis of advanced wdm-pons. IEEE Commun. Mag. 49(2), s25–s32 (2011)

    Article  Google Scholar 

  32. Mahloo, M., Chen, J., Wosinska, L., Dixit, A., Lannoo, B., Colle, D., Machuca, C.M.: Toward reliable hybrid wdm/tdm passive optical networks. IEEE Commun. Mag. 52(2), S14–S23 (2014)

    Article  Google Scholar 

  33. Mahloo, M., Machuca, C.M., Chen, J., Wosinska, L.: Protection cost evaluation of wdm-based next generation optical access networks. Opt. Switch. Netw. 10(1), 89–99 (2013)

    Article  Google Scholar 

  34. Khan, J., Khan, Y., Ullah, S., Querishi, S.S.: Transmission performance and cost analysis of multi-carrier-based wavelength division multiplexed passive optical access network. J. Opt. Commun. 41(2), 159–165 (2020)

    Article  Google Scholar 

  35. Eurocontracts global supplier of high capacity FSO systems. http://eurosro.cz

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jawad Mirza.

Ethics declarations

Conflict of interest

The authors of this manuscript certify that they have no affiliations with or involvement in any organization or entity with any financial interest in the materials discussed in this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirza, J., Kanwal, B., Imtiaz, W.A. et al. Single mode fiber-free space optic based hybrid \(32\times 2~\text{Gbps}\) WDM-PON architecture employing optical frequency comb source and polarization multiplexing. Opt Rev 28, 255–265 (2021). https://doi.org/10.1007/s10043-021-00655-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-021-00655-7

Keywords

Navigation