Skip to main content
Log in

Gas phase structure and fragmentation of [Cytosine-Guanine]\(\hbox {Ag}^{+}\) complex studied by mass-resolved IRMPD spectroscopy

  • Regular Article - Molecular Physics and Chemical Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The silver-mediated cytosine-guanine [CGAg]\(^{+}\) pair was characterized by mass-resolved IRMPD spectroscopy and electronic structure calculations at the DFT level. Three fragments were observed: [GAg]\(^{+}\), [CAg]\(^{+}\) and [CH]\(^{+}\). From the mass-resolved IRMPD spectra recorded on the mass of each fragment, two isomers of the [CGAg]\(^{+}\) complex were identified. The most populated isomer is a Hoogsteen structure [HooAg]\(^{+}\) between canonical cytosine (CKA(1)) and canonical guanine (GKA(9)), while the second isomer is an altered-Hoogsteen-like pair [*HooAg]\(^{+}\) in which guanine is in a non-canonical form (GKA(7)). The determined yields of each fragment are strongly dependent of the isomer of the precursor ion because of the fragmentation energy of the different channels. Finally, the [CH]\(^{+}\) is suggested to be produced by a metal-assisted proton transfer from guanine to cytosine preceded by an isomerization of the [HooAg]\(^{+}\) isomer.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: All data included in this manuscript are available upon request by contacting the corresponding author.]

References

  1. N.C. Seeman, Nature 421, 427 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  2. U. Feldkamp, C.M. Niemeyer, Angew. Chem. Int. Ed. 45, 1856 (2006)

    Article  Google Scholar 

  3. Nanobiotechnology: Concepts, Applications and Perspectives, ed. by C. M. Niemeyer, C. A. Mirkin, (Wiley-VCH, Weinheim, 2004)

  4. V. Gabelica, in In Nucleic Acids in the Gas Phase, ed. by V. Gabelica (Springer-Verlag, Berlin Heidelberg, 2014)

    Chapter  Google Scholar 

  5. V. Gabelica, F. Rosu, E. De Pauw, J. Lemaire, J.C. Gillet, J.C. Poully, F. Lecomte, G. Grégoire, J.P. Schermann, C. Desfrancois, J. Am. Chem. Soc. 130, 1810 (2008)

    Article  Google Scholar 

  6. M. Gueron, J.L. Leroy, Curr. Opin. Struct. Biol. 10, 326 (2000)

    Article  Google Scholar 

  7. P. Fojtík, M. Vorlíckovaì, Nucleic Acids Res. 29, 4684 (2001)

    Article  Google Scholar 

  8. M. Duca, P. Vekhoff, K. Oussedik, L. Halby, P.B. Arimondo, Nucleic Acids Res. 36, 5123 (2008)

    Article  Google Scholar 

  9. T. Ihara, T. Ishii, N. Araki, A.W. Wilson, A. Jyo, J. Am. Chem. Soc. 131, 3826 (2009)

    Article  Google Scholar 

  10. A.M. Gacy, G.M. Goellner, C. Spiro, X. Chen, G. Gupta, E.M. Bradbury, R.B. Dyer, M. Mikesell, J.Z. Yao, A.J. Johnson, A. Richter, S.B. Melancon, C.T. McMurray, Mol. Cell 1, 583 (1998)

    Article  Google Scholar 

  11. S.M. Mirkin, Nature 447, 932 (2007)

    Article  ADS  Google Scholar 

  12. J.C. Francois, J. Lacoste, L. Lacroix, J.L. Mergny, Methods Enzymol. 313, 74 (2000)

    Article  Google Scholar 

  13. J. Kypr, I. Kejnovska, D. Renciuk, M. Vorlickova, Nucleic Acids Res. 37, 1713 (2009)

    Article  Google Scholar 

  14. V. Verdolino, R. Cammi, B.H. Munk, H.B. Schlegel, J. Phys. Chem. B 112, 16860 (2008)

    Article  Google Scholar 

  15. D.A. Rusling, T. Brown, K.R. Fox, in Sequence-Specific DNA Binding Agents, ed. by M. Waring (RSC Publishing, Cambridge, 2006)

    Google Scholar 

  16. H.A. Day, C. Huguin, Z.A.E. Waller, Chem. Commun. 49, 7696 (2013)

    Article  Google Scholar 

  17. P.O. Lowdin, Rev. Mod. Phys. 35, 724 (1963)

    Article  ADS  Google Scholar 

  18. J. Bertrán, L. Blancafort, M. Noguera, M. Sodupe, in Computational Studies of RNA and DNA, ed. by J. Sponer, F. Lankas (Springer, The Netherlands, 2006)

    Google Scholar 

  19. T. Matsui, H. Miyachi, Y. Shigeta, K. Hirao, in In Some Applications of Quantum Mechanics, ed. by M.R. Pahlayani (InTech, Rijeka, 2012)

    Google Scholar 

  20. T. Matsui, Y. Shigeta, K. Hirao, J. Phys. Chem. B 111, 1176 (2007)

    Article  Google Scholar 

  21. F. Rosu, V. Gabelica, L. Joly, G. Grégoire, E. De Pauwa, Phys. Chem. Chem. Phys. 12, 13448 (2010)

    Article  Google Scholar 

  22. J. Oomens, A.R. Moehlig, T.H. Morton, J. Phys. Chem. Lett. 1, 2891 (2010)

    Article  Google Scholar 

  23. B. Yang, M.T. Rodgers, J. Am. Chem. Soc. 136, 282 (2014)

    Article  Google Scholar 

  24. J. Gao, G. Berden, M.T. Rodgers, J. Oomens, Phys. Chem. Phys. Chem. 18, 7269 (2016)

    Article  Google Scholar 

  25. B. Yang, R.R. Wu, N.C. Polfer, G. Berden, J. Oomens, M.T. Rodgers, J. Am. Soc. Mass Spectrom. 24, 1523 (2016)

    Article  Google Scholar 

  26. M.I. Taccone, G. Féraud, M. Berdakin, C. Dedonder-Lardeux, C. Jouvet, G.A. Pino, J. Chem. Phys. 143, 041103 (2015)

  27. M. Berdakin, V. Steinmetz, P. Maitre, G.A. Pino, J. Phys. Chem. A. 118, 3804 (2014)

    Article  Google Scholar 

  28. M. Berdakin, G. Féraud, C. Dedonder-Lardeux, C. Jouvet, G.A. Pino, Phys. Chem. Chem. Phys. 16, 10643 (2014)

    Article  Google Scholar 

  29. M. Berdakin, V. Steinmetz, P. Maitre, G.A. Pino, Phys. Chem. Chem. Phys. 17, 25915 (2015)

    Article  Google Scholar 

  30. G. Feìraud, M. Berdakin, C. Dedonder, C. Jouvet, G.A. Pino, J. Phys. Chem. B. 119, 2219 (2015)

    Article  Google Scholar 

  31. M. Broquier, S. Soorkia, G.A. Pino, C. Dedonder-Lardeux, C. Jouvet, G. Grégoire, J. Phys. Chem. A. 121, 6429 (2017)

    Article  Google Scholar 

  32. A.F. Cruz-Ortiz, M. Rossa, F. Berthias, M. Berdakin, P. Maitre, G.A. Pino, J. Phys. Chem. Lett. 8, 5501 (2017)

    Article  Google Scholar 

  33. Y. Nosenko, F. Menges, C. Riehn, G. Niedner-Schatteburg, Phys. Chem. Chem. Phys. 15, 8171 (2013)

    Article  Google Scholar 

  34. R. Cheng, E. Loire, T.D. Fridgen, Phys. Chem. Chem. Phys. 21, 11103 (2019)

    Article  Google Scholar 

  35. R. Cheng, J. Martens, T.D. Fridgen, Phys. Chem. Chem. Phys. 22, 11546 (2020)

    Article  Google Scholar 

  36. R. Cheng, E. Loire, J. Martens, T.D. Fridgen, Phys. Chem. Chem. Phys. 22, 2999 (2020)

    Article  Google Scholar 

  37. S. Øvad Pedersen, K. Støchkel, C. Skinnerup Byskov, L. Munksgaard Baggesen, S. Brøndsted Nielsen, Phys. Chem. Chem. Phys. 15, 19748 (2013)

  38. S. Øvad Pedersen, C. Skinnerup Byskov, F. Turecek, S. Brøndsted Nielsen, J. Phys. Chem. A 118, 4256 (2014)

    Article  Google Scholar 

  39. J.-Y. Salpin, S. Guillaumont, J. Tortajada, L. MacAleese, J. Lemaire, P. Maitre, Chem. Phys. Chem. 8, 2235 (2007)

    Article  Google Scholar 

  40. B. Chiavarino, M.E. Crestoni, S. Fornarini, D. Scuderi, J.-Y. Salpin, J. Am. Chem. Soc. 135, 1445 (2013)

    Article  Google Scholar 

  41. P. Maitre, D. Scuderi, D. Corinti, B. Chiavarino, M.E. Crestoni, S. Fornarini, Chem. Rev. 120, 3261 (2020)

    Article  Google Scholar 

  42. J.M. Bakker, T. Besson, J. Lemaire, D. Scuderi, P. Maitre, J. Phys. Chem. A. 111, 13415 (2007)

    Article  Google Scholar 

  43. R. Prazeres, F. Glotin, C. Insa, D.A. Jaroszynski, J.M. Ortega, Eur. Phys. J. D. 3, 87 (1998)

    Article  ADS  Google Scholar 

  44. C. Lee, W. Yang, R. Parr, Phys. Rev. B. 37, 785 (1988)

    Article  ADS  Google Scholar 

  45. A.D. Becke, J. Chem. Phys. 98, 5648 (1993)

    Article  ADS  Google Scholar 

  46. D. Andrea, U. Haussermann, M. Dolg, M. Stoll, H. Preuss, Theor. Chim. Acta. 77, 123 (1990)

    Article  Google Scholar 

  47. M.D. Halls, J. Velkovski, H.B. Schlegel, Theor. Chem. Acc. 105, 413 (2001)

    Article  Google Scholar 

  48. J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev. 105, 2999 (2005)

    Article  Google Scholar 

  49. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J. E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V. G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, revision E.01. Gaussian Inc., Wallingford, CT (2013)

  50. D.R. Glowacki, C.-H. Liang, C. Morley, M.J. Pilling, S.H. Robertson, J. Phys. Chem. A 116, 9545 (2012)

    Article  Google Scholar 

  51. C. Colominas, F.J. Luque, M. Orozco, J. Am. Chem. Soc. 118, 6811 (1996)

    Article  Google Scholar 

  52. D.A. Megger, C. Fonseca Guerra, F.M. Bickelhaupt, J. Müller, J. Inorg. Biochem. 105, 1398 (2011)

  53. Y. Sun, M. M. Moe, J. Liu, Phys. Chem. Chem. Phys. (https://doi.org/10.1039/D0CP04243A)

  54. S. Chakraborty, O. Dopfer, ChemPhysChem 12, 1999 (2011)

    Article  Google Scholar 

  55. H. Koizumi, M. Larson, F. Muntean, P.B. Armentrout, Int. J. Mass Spectrom. 228, 221 (2003)

    Article  Google Scholar 

  56. A.F. Cruz-Ortiz, M.I. Taccone, P. Maitre, M. Rossa, G.A. Pino, ChemPhysChem 21, 2571 (2020)

    Article  Google Scholar 

  57. M. Noguera, M. Sodupe, J. Bertrán, Theor. Chem. Acc. 112, 318 (2004)

    Article  Google Scholar 

  58. Y. Lina, H. Wanga, S. Gaoa, R. Lia, H.F. Schaefer, J. Phys. Chem. B 116, 8908 (2012)

    Article  Google Scholar 

  59. Y. Han, D. Li, J. Mol. Model. 25, 40 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been conducted within the International Associated Laboratory LEMIR (CNRS/CONICET) and was supported by CONICET, FONCyT, SeCyT-UNC and by the EU Horizon 2020 Program (CALIPSO Plus and EU_FT-ICR_MS, under Grant numbers 730872 and 731077, respectively). The authors are grateful to the staff members at CLIO for technical support. GAP thanks the Labex PALM (ANR-10-LABX-0039-PALM) for the invited Professor Grant in 2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo A. Pino.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cruz-Ortiz, A.F., Jara-Toro, R.A., Berdakin, M. et al. Gas phase structure and fragmentation of [Cytosine-Guanine]\(\hbox {Ag}^{+}\) complex studied by mass-resolved IRMPD spectroscopy. Eur. Phys. J. D 75, 119 (2021). https://doi.org/10.1140/epjd/s10053-021-00129-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00129-0

Navigation