Skip to main content
Log in

Multi-party blind quantum computation protocol with mutual authentication in network

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Blind quantum computation (BQC) can ensure a client with limited quantum capability safely delegates computing tasks to a remote quantum server. In order to resist attacks from ignoring identity authentication in BQC protocols, it is necessary to guarantee the legality of both clients and servers in a multi-party BQC network. So we propose a multi-party BQC protocol involving three phases to distribute shared keys and authenticate identities. Firstly, by using the advantages of measurement device independent quantum key distribution (MDI-QKD), the registered client and the assigned server could share the initial key safely in registration phase. Secondly, with the help of semi-honest certificate authority (CA), mutual identity authentication phase realizes the two-way authentication from both sides through the shared key simultaneously. Thirdly, in the blind quantum computing phase, a registered client can complete his computing task by just measuring the qubits from the assigned server rather than preparing the qubits. Moreover, combined with first-in-first-out (FIFO) principle, clients’ authentication and blind quantum computing can be processed in parallel. The protocol can also be applied in other multi-party BQC protocols with the universality of resource states. Compared with other BQC protocols, the reliability of the protocol with identity authentication is guaranteed, and the efficiency will be significantly reflected in real experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arrighi P, Salvail L. Blind quantum computation. Int J Quantum Inform, 2006, 4: 883–898

    Article  Google Scholar 

  2. Childs A M. Secure assisted quantum computation. Quantum Inform Comput, 2005, 5: 456–466

    Article  MathSciNet  Google Scholar 

  3. Broadbent A, Fitzsimons J, Kashefi E. Universal blind quantum computation. In: Proceedings of 2009 50th Annual IEEE Symposium on Foundations of Computer Science, 2009. 517–526

  4. Li Q, Chan W H, Wu C, et al. Triple-server blind quantum computation using entanglement swapping. Phys Rev A, 2014, 89: 040302

    Article  Google Scholar 

  5. Raussendorf R, Briegel H J. A one-way quantum computer. Phys Rev Lett, 2001, 86: 5188–5191

    Article  Google Scholar 

  6. Greganti C, Roehsner M C, Barz S, et al. Demonstration of measurement-only blind quantum computing. New J Phys, 2016, 18: 013020

    Article  Google Scholar 

  7. Huang H L, Zhao Q, Ma X, et al. Experimental blind quantum computing for a classical client. Phys Rev Lett, 2017, 119: 050503

    Article  Google Scholar 

  8. Huang H L, Bao W S, Li T, et al. Universal blind quantum computation for hybrid system. Quantum Inf Process, 2017, 16: 199

    Article  MathSciNet  Google Scholar 

  9. Yin H L, Chen T Y, Yu Z W, et al. Measurement-device-independent quantum key distribution over a 404 km optical fiber. Phys Rev Lett, 2016, 117: 190501

    Article  Google Scholar 

  10. Morimae T, Koshiba T. Impossibility of perfectly-secure delegated quantum computing for classical client. 2014. ArXiv: 1407.1636

  11. Hayashi M, Morimae T. Verifiable measurement-only blind quantum computing with stabilizer testing. Phys Rev Lett, 2015, 115: 220502

    Article  Google Scholar 

  12. Morimae T, Fitzsimons J F. Post hoc verification with a single prover. 2016. ArXiv: 1603.06046

  13. Morimae T. Verification for measurement-only blind quantum computing. Phys Rev A, 2014, 89: 060302

    Article  Google Scholar 

  14. Gheorghiu A, Kashefi E, Wallden P. Robustness and device independence of verifiable blind quantum computing. New J Phys, 2015, 17: 083040

    Article  Google Scholar 

  15. Gheorghiu A, Wallden P, Kashefi E. Rigidity of quantum steering and one-sided device-independent verifiable quantum computation. New J Phys, 2017, 19: 023043

    Article  Google Scholar 

  16. Yang Y G, Wen Q Y. An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J Phys A-Math Theor, 2009, 42: 055305

    Article  MathSciNet  Google Scholar 

  17. Tseng H Y, Lin J, Hwang T. New quantum private comparison protocol using EPR pairs. Quantum Inf Process, 2012, 11: 373–384

    Article  MathSciNet  Google Scholar 

  18. Zhang W W, Zhang K J. Cryptanalysis and improvement of the quantum private comparison protocol with semi-honest third party. Quantum Inform Process, 2013, 12: 1981–1990

    Article  MathSciNet  Google Scholar 

  19. Wei C Y, Cai X Q, Wang T Y, et al. Error tolerance bound in QKD-based quantum private query. IEEE J Sel Areas Commun, 2020, 38: 517–527

    Article  Google Scholar 

  20. Gao F, Qin S J, Huang W, et al. Quantum private query: a new kind of practical quantum cryptographic protocol. Sci China-Phys Mech Astron, 2019, 62: 70301

    Article  Google Scholar 

  21. Wei C Y, Cai X Q, Liu B, et al. A generic construction of quantum-oblivious-key-transfer-based private query with ideal database security and zero failure. IEEE Trans Comput, 2018, 67: 2–8

    Article  MathSciNet  Google Scholar 

  22. Barz S, Kashefi E, Broadbent A, et al. Demonstration of blind quantum computing. Science, 2012, 335: 303–308

    Article  MathSciNet  Google Scholar 

  23. Dunjko V, Kashefi E, Leverrier A. Blind quantum computing with weak coherent pulses. Phys Rev Lett, 2012, 108: 200502

    Article  Google Scholar 

  24. Morimae T, Fujii K. Blind quantum computation protocol in which Alice only makes measurements. Phys Rev A, 2013, 87: 050301

    Article  Google Scholar 

  25. Kong X Q, Li Q, Wu C, et al. Multiple-server flexible blind quantum computation in networks. Int J Theor Phys, 2016, 55: 3001–3007

    Article  Google Scholar 

  26. Li Q, Li Z, Chan W H, et al. Blind quantum computation with identity authentication. Phys Lett A, 2018, 382: 938–941

    Article  MathSciNet  Google Scholar 

  27. Lo H K, Curty M, Qi B. Measurement-device-independent quantum key distribution. Phys Rev Lett, 2012, 108: 130503

    Article  Google Scholar 

  28. Dunjko V, Fitzsimons J, Portmann C, et al. Composable security of delegated quantum computation. In: Proceedings of the 20th Annual International Conference on the Theory and Application of Cryptology and Information Security, 2014. 406–425

  29. Morimae T, Koshiba T. Composable security of measuring-Alice blind quantum computation. 2013. ArXiv: 1306.2113

  30. Liang M. Blind quantum computation with completely classical client and a trusted center. 2015. ArXiv: 1508.07778

  31. Sheng Y B, Zhou L. Deterministic entanglement distillation for secure double-server blind quantum computation. Sci Rep, 2015, 5: 7815

    Article  Google Scholar 

  32. Briegel H J, Browne D E, Dür W, et al. Measurement-based quantum computation. Nat Phys, 2009, 5: 19–26

    Article  Google Scholar 

  33. Raussendorf R, Browne D E, Briegel H J. Measurement-based quantum computation on cluster states. Phys Rev A, 2003, 68: 022312

    Article  Google Scholar 

  34. Rossi M, Huber M, Bruß D, et al. Quantum hypergraph states. New J Phys, 2013, 15: 113022

    Article  MathSciNet  Google Scholar 

  35. Hayashi M, Hajdusek M. Self-guaranteed measurement-based quantum computation. Phys Rev A, 2018, 97: 052308

    Article  Google Scholar 

  36. Childs A M, Leung D W, Nielsen M A. Unified derivations of measurement-based schemes for quantum computation. Phys Rev A, 2005, 71: 032318

    Article  Google Scholar 

  37. Hein M, Dur W, Eisert J, et al. Entanglement in graph states and its applications. 2006. ArXiv: quant-ph/0602096

  38. Zhang X, Luo W, Zeng G, et al. A hybrid universal blind quantum computation. Inf Sci, 2019, 498: 135–143

    Article  MathSciNet  Google Scholar 

  39. Gottesman D, Lo H K, Lutkenhaus N, et al. Security of quantum key distribution with imperfect devices. In: Proceedings of International Symposium on Information Theory, 2004. 136

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 61671087, 61962009, 61003287), Huawei Technologies Co. Ltd. (Grant No. YBN2020085019), and the Fund of the Fundamental Research Funds for the Central Universities (Grant No. 2019XD-A02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiubo Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shan, RT., Chen, X. & Yuan, KG. Multi-party blind quantum computation protocol with mutual authentication in network. Sci. China Inf. Sci. 64, 162302 (2021). https://doi.org/10.1007/s11432-020-2977-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-020-2977-x

Keywords

Navigation