Skip to main content
Log in

Electrogenesis in Plant–Microbial Fuel Cells in Parallel and Series Connections

  • PHYSICS FOR SCIENCES OF LIFE
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The electrogenic properties of plant–microbial fuel cells (P-MFCs) assembled into a battery are studied. The operation of a single cell is studied experimentally in comparison with parallel and series connections of cells, which are two options for connection in an electrical circuit. A potential difference of ~70 mV, which gradually vanishes, is registered in a P-MFC that does not include a plant organism. We hypothesize that the root system, with involvement of electrogenic chemoorganotrophic microorganisms, gives rise to diffusional electromotive force. We show that in series connection of three fuel cells the bioelectric potential generated by an individual cell, which is 170 mV, increases only by a factor of 1.5. In parallel connection of three cells, the current produced under a load increases, but also only by a factor of 1.5, and this takes place at later developmental stages of the plants, which is presumably caused by triggering certain compensatory mechanisms that diminish the electrogenic properties of the plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. D. P. B. T. B. Strik, H. V. M. Hamelers, J. F. H. Snel, and C. J. N. Buisman, Int. J. Energy Res. 32 (9), 870 (2008). https://doi.org/10.1002/er.1397

    Article  Google Scholar 

  2. P. Chiranjeevi, D. K. Yeruva, A. K. Kumar, S. V. Mohan, and S. Varjani, in Microbial Electrochemical Technology (Elsevier, Amsterdam, 2019), Chap. 3.8. https://doi.org/10.1016/B978-0-444-64052-9.00022-4

  3. K. Rabaey and W. Verstraete, Trends Biotechnol. 23 (6), 291 (2005). https://doi.org/10.1016/j.tibtech.2005.04.008

    Article  Google Scholar 

  4. B. Kokabian and V. G. Gude, Environ. Sci.: Processes Impacts 15 (12), 2178 (2013). https://doi.org/10.1039/C3EM00415E

    Article  Google Scholar 

  5. F. T. Kabutey, Q. Zhao, L. Wei, J. Ding, P. Antwi, F. K. Quashie, and W. Wang, Renewable Sustainable Energy Rev. 110, 402 (2019). https://doi.org/10.1016/j.rser.2019.05.016

    Article  Google Scholar 

  6. B. E. Logan, Microbial Fuel Cells (Wiley, New Jersey, 2008).

    Google Scholar 

  7. D. P. B. T. B. Strik, R. A. Timmers, M. Helder, K. J. J. Steinbusch, H. V. M. Hamelers, and C. J. N. Buisman, Trends Biotechnol. 29 (1), 41 (2011). https://doi.org/10.1016/j.tibtech.2010.10.001

    Article  Google Scholar 

  8. M. Helder, W.-S. Chen, E. J. M. van der Harst, D. P. B. T. B. Strik, H. V. M. Hamelers, C. J. N. Buisman, and J. Potting, Biofuels, Bioprod. Biorefin. 7 (1), 52 (2013). https://doi.org/10.1002/bbb.1373

    Article  Google Scholar 

  9. S. V. Mohan, G. Mohanakrishna, and P. Chiranjeevi, Bioresour. Technol. 102, 7036 (2011). https://doi.org/10.1016/j.biortech.2011.04.033

    Article  Google Scholar 

  10. Y. Feng, D. Li, J. Liu, and W. He, in Microbial Electrochemical Technology (Elsevier, Amsterdam, 2019), Chap. 1.3. https://doi.org/10.1016/B978-0-444-64052-9.00003-0

  11. L. D. Schamphelaire, L. V. D. Bossche, H. S. Dang, M. Höfte, N. Boon, K. Rabaey, and W. Verstraete, Environ. Sci. Technol. 42 (8), 3053 (2008). https://doi.org/10.1021/es071938w

    Article  ADS  Google Scholar 

  12. H. Deng, Z. Chen, and F. Zhao, ChemSusChem 5 (6), 1006 (2012). https://doi.org/10.1002/cssc.201100257

    Article  Google Scholar 

  13. V. V. Sheremet, N. N. Volchenko, and A. A. Samkov, Proc. Int. Sci. Pract. Conf. “Biotechnology and Society in the 21st Century” (Barnaul, September 15–18, 2015), pp. 429–431.

  14. P. Chiranjeevi, R. Chandra, and S. V. Mohan, Ecol. Eng. 51, 181 (2013). https://doi.org/10.1016/j.ecoleng.2012.12.014

    Article  Google Scholar 

  15. R. Piyare, A. L. Murphy, P. Tosato, and D. Brunelli, Proc. IEEE 42nd Conf. on Local Computer Networks Workshops (IEEE, Singapore, 2017), p. 18.

  16. L. Doherty, Y. Zhao, X. Zhao, Y. Hu, X. Hao, and L. Xu, Water Res. 85, 38 (2015). https://doi.org/10.1016/j.watres.2015.08.016

    Article  Google Scholar 

  17. N. Kaku, N. Yonezawa, Y. Kodama, and K. Watanabe, Appl. Microbiol. Biotechnol. 79 (1), 43 (2008). https://doi.org/10.1007/s00253-008-1410-9

    Article  Google Scholar 

  18. A. P. Khare and H. Bundela, Int. J. Eng. Trend. Technol. 4 (9), 4206 (2013).

    Google Scholar 

  19. S. Liu, H. Song, X. Li, and F. Yang, Int. J. Photoenergy 2013, 1 (2013). https://doi.org/10.1155/2013/172010

  20. M. A. Moqsud, J. Yoshitake, Q. S. Bushra, M. Hyodo, K. Omine, and D. P. B. T. B. Strik, Waste Manage. 36, 63 (2015). https://doi.org/10.1016/j.wasman.2014.11.004

    Article  Google Scholar 

  21. L. Lu, D. Xing, and Z. J. Ren, Bioresour. Technol. 195, 115 (2015). https://doi.org/10.1016/j.biortech.2015.05.098

    Article  Google Scholar 

  22. R. Nitisoravut and R. Regmi, Renewable Sustainable Energy Rev. 76, 81 (2017). https://doi.org/10.1016/j.rser.2017.03.064

    Article  Google Scholar 

  23. L. Gouveia, C. Neves, D. Sebastião, B. P. Nobre, and C. T. Matos, Bioresour. Technol. 154, 171 (2014). https://doi.org/10.1016/j.biortech.2013.12.049

    Article  Google Scholar 

  24. K. Wetser, E. Sudirjo, C. J. Buisman, and D. P. B. T. B. Strik, Appl. Energy 137, 151 (2015). https://doi.org/10.1016/j.apenergy.2014.10.006

    Article  Google Scholar 

  25. U. Schröder, Phys. Chem. Chem. Phys. 9, 2619 (2007). https://doi.org/10.1039/B703627M

    Article  Google Scholar 

  26. K. J. Parkinson, Thesis of Doctoral Dissertation in Philosophy (Durham Univ., 1963).

  27. R. Regmi, Thesis of Master of Science (Engineering and Technology) (Thammasat Univ., Thailand, 2017).

  28. J. G. Lee, B. Y. Lee, and H. J. Lee, Sci. Hortic. 110, 119 (2006). https://doi.org/10.1016/j.scienta.2006.06.013

    Article  Google Scholar 

  29. G. Neumann, S. Bott, M. A. Ohler, H. P. Mock, R. Lippmann, R. Grosch, and K. Smalla, Front. Microbiol. 5, 2 (2014). https://doi.org/10.3389/fmicb.2014.00002

    Article  Google Scholar 

  30. T. E. Kuleshova, I. N. Chernousov, O. R. Udalova, L. M. Anikina, Yu. V. Khomyakov, A. V. Aleksandrov, I. S. Seredin, S. V. Feofanov, S. A. Shcheglov, N. R. Gall, and G. G. Panova, Biophysics 65 (1), 95 (2020). https://doi.org/10.1134/S0006350920010121

    Article  Google Scholar 

  31. T. E. Kuleshova, A. V. Bushlyakova, and N. R. Gall, Tech. Phys. Lett. 45 (3), 190 (2019). https://doi.org/10.1134/S1063785019030106

    Article  ADS  Google Scholar 

  32. E. I. Ermakov, Selected Works (Petersburg Nucl. Phys. Inst., St. Petersburg, 2009) [in Russian].

    Google Scholar 

  33. Yu. I. Zheltov and G. G. Panova, RF Patent No. 108705, Byull. Izobret., No. 27 (2011).

  34. G. G. Panova, I. N. Chernousov, O. R. Udalova, A. V. Aleksandrov, I. V. Karmanov, L. M. Anikina, V. L. Sudakov, and V. P. Yakushev, Dokl. Ross. Akad. Sel’skokhoz. Nauk, No. 4, 17 (2015).

    Google Scholar 

  35. I. N. Chernousov, G. G. Panova, O. R. Udalova, and A. V. Aleksandrov, RF Patent No. 189309, Byull. Izobret., No. 15 (2019).

  36. A. I. Pozdnyakov, L. A. Pozdnyakova, and A. D. Pozdnyakova, Stationary Electrical Fields in Soils (KMK Sci., Moscow, 1996) [in Russian].

    Google Scholar 

  37. S. S. Medvedev, Plant Physiology (BKhV-Petersburg, St. Petersburg, 2012) [in Russian].

  38. B. E. Logan, R. Rossi, A. Ragab, and P. E. Saikaly, Nat. Rev. Microbiol. 17, 307 (2019). https://doi.org/10.1038/s41579-019-0173-x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. E. Kuleshova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Kukharuk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuleshova, T.E., Gall’, N.R., Galushko, A.S. et al. Electrogenesis in Plant–Microbial Fuel Cells in Parallel and Series Connections. Tech. Phys. 66, 496–504 (2021). https://doi.org/10.1134/S1063784221030142

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784221030142

Navigation