Skip to main content
Log in

Effect of Methods for Fabrication of Polymer Composites with Carbon Nanotubes on Conduction Processes

  • PHYSICAL SCIENCE OF MATERIALS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Effect of regimes of fabrication of nanostructured polymer composites filled with carbon nanotubes on electrophysical characteristics is analyzed. Dependence of the conductivity of composites in a frequency interval of 50 Hz–5 MHz and a temperature interval of 15–375 K on the dimensional effect of multi-walled carbon nanotubes, method for functionalization, and method for ultrasonic processing is studied. It is shown that different effects of electric transport in composites affect the resulting conductivity. The best electrophysical parameters are obtained with the aid of noncovalent functionalization of nanotubes and focused ultrasound treatment. The method makes it possible to obtain a composite conductivity of 0.01 S/сm in the specified frequency interval at a filler concentration of 0.5 wt %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. W. Bauhofer and J. Z. Kovacs, Compos. Sci. Technol. 69 (10), 1486 (2009). https://doi.org/10.1016/j.compscitech.2008.06.018

    Article  Google Scholar 

  2. A. Celzard, E. McRae, C. Deleuze, M. Dufort, G. Furdin, and J. F. Marêché, Phys. Rev. B. 53 (10), 6209 (1996). https://doi.org/10.1103/PhysRevB.53.6209

    Article  ADS  Google Scholar 

  3. J. B. Bai and A. Allaoui, Composites, Part A 34 (8), 689 (2003). https://doi.org/10.1016/S1359-835X(03)00140-4

    Article  Google Scholar 

  4. C. A.  Martin,  J. K. W.  Sandler,  M. S. P.  Shaffer, M.-K. Schwarz, W. Bauhofer, K. Schulte, and A. H. Windle, Compos. Sci. Technol. 64 (15), 2309 (2004). https://doi.org/10.1016/j.compscitech.2004.01.025

    Article  Google Scholar 

  5. K. W. Putz, O. C. Compton, M. J. Palmeri, S. T. Nguyen, and L. C. Brinson, Adv. Funct. Mater. 20 (19), 3322 (2010). https://doi.org/10.1002/adfm.201000723

    Article  Google Scholar 

  6. Y. Y. Huang and E. M. Terentjev, Polymers 4 (1), 275 (2012). https://doi.org/10.3390/polym4010275

    Article  Google Scholar 

  7. S. Kugler, K. Kowalczyk, and T. Spychaj, Prog. Org. Coat. 111, 196 (2017). https://doi.org/10.1016/j.porgcoat.2017.05.017

    Article  Google Scholar 

  8. J. Li, P. C. Ma, W. S. Chow, C. K. To, B. Z. Yang, and J.-K. Kim, Adv. Funct. Mater. 17 (16), 3207 (2007). https://doi.org/10.1002/adfm.200700065

    Article  Google Scholar 

  9. S. Liang, G. Li, and R. Tian, J. Mater. Sci. 51, 3513 (2016). https://doi.org/10.1007/s10853-015-9671-z

    Article  ADS  Google Scholar 

  10. K. L. Lu, R. M. Lago, Y. K. Chen, M. L. H. Green, P. J. F. Harris, and S. C. Tsang, Carbon 34 (6), 814 (1996). https://doi.org/10.1016/0008-6223(96)89470-X

    Article  Google Scholar 

  11. S. Badaire, P. Poulin, M. Maugey, and C. Zakri, Langmuir 20 (24), 10367 (2004). https://doi.org/10.1021/la049096r

    Article  Google Scholar 

  12. P.-C. Ma, N. A. Siddiqui, G. Marom, and J.-K. Kim, Composites, Part A 41 (10), 1345 (2010). https://doi.org/10.1016/j.compositesa.2010.07.003

    Article  Google Scholar 

  13. A. Setaro, J. Phys.: Condens. Matter. 29 (42), 423003 (2017). https://doi.org/10.1088/1361-648X/aa8248

    Article  Google Scholar 

  14. S. M. Fatemi and M. Foroutan, J. Nanostruct. Chem. 6, 29 (2016). https://doi.org/10.1007/s40097-015-0175-9

    Article  Google Scholar 

  15. D. A. Shibaev, V. Yu. Orlov, D. A. Bazlov, and V. E. Vaganov, Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Technol. 54 (7), 38 (2011).

    Google Scholar 

  16. A.V. Krestinin and A.P. Kharitonov, Polym. Sci., Ser. B 60 (4), 516 (2018). https://doi.org/10.1134/S156009041804005X

    Article  Google Scholar 

  17. F. F. Komarov, O. V. Milchanin, I. D. Parfimovich, M. V. Grinchenko, I. N. Parhomenko, A. G. Tkachev, and D. S. Bychanok, J. Appl. Spectrosc. 84 (4), 596 (2017). https://doi.org/10.1007/s10812-017-0516-1

    Article  ADS  Google Scholar 

  18. T. N. Koltunowicz, J. Appl. Spectrosc. 82 (4), 623 (2015). https://doi.org/10.1007/s10812-015-0158-0

    Article  ADS  Google Scholar 

  19. Z. Spitalsky, D. Tasis, K. Papagelis, and C. Galiotis, Prog. Polym. Sci. 35 (3), 357 (2010). https://doi.org/10.1016/j.progpolymsci.2009.09.003

    Article  Google Scholar 

  20. A. V. Eletskii, A. A. Knizhnik, B. V. Potapkin, and J. M. Kenny, Phys.-Usp. 58 (3), 209 (2015). https://doi.org/10.3367/UFNe.0185.201503a.0225

    Article  Google Scholar 

  21. J. K. W. Sandler, J. E. Kirk, I. A. Kinloch, M. S. P. Shaffer, and A. H. Windle, Polymer 44 (19), 5893 (2003). https://doi.org/10.1016/S0032-3861(03)00539-1

    Article  Google Scholar 

  22. J. B. Bai and A. Allaoui, Composites, Part A 34 (8), 689 (2003). https://doi.org/10.1016/S1359-835X(03)00140-4

    Article  Google Scholar 

  23. N. Li, Y. Huang, F. Du, X. He, X. Lin, H. Gao, Y. Ma, F. Li, Y. Chen, and P. C. Eklund, Nano Lett. 6 (6), 1141, (2006). https://doi.org/10.1021/nl0602589

    Article  ADS  Google Scholar 

  24. E. A. Yakovlev, N. A. Yakovlev, I. A. Il’inykh, I. N. Burmistrov, and N. V. Gorshkov, Vestn. Tomsk. Gos. Univ. Khim., No. 3 (5), 15 (2017). https://doi.org/10.17223/24135542/5/2

  25. V. Skákalová, U. Detlaff-Weglikowska, and S. Roth, Synth. Met. 152 (1–3), 349 (2005). https://doi.org/10.1016/j.synthmet.2005.07.291

    Article  Google Scholar 

  26. I. W. P. Chen, R. Liang, H. Zhao, and C. Zhang, Nanotechnology 22 (48), 485708 (2011). https://doi.org/10.1088/0957-4484/22/48/485708

    Article  Google Scholar 

  27. N. F. Mott and E. A. Davis, Electronic Processes in Non-Crystalline Materials (Clarendon, Oxford, 1979).

    Google Scholar 

  28. K. Shimakawa, Philos. Mag. B 46 (2), 123 (1982). https://doi.org/10.1080/13642818208246429

    Article  ADS  Google Scholar 

  29. R. A. Street, Phys. Rev. B 17 (10), 3984 (1978). https://doi.org/10.1103/PhysRevB.17.3984

    Article  ADS  Google Scholar 

  30. A. V. Eletskii, Phys.-Usp. 52 (3), 209 (2009). https://doi.org/10.3367/UFNe.0179.200903a.0225

    Article  Google Scholar 

  31. A. Mansingh, Bull. Mater. Sci. 2, 325 (1980). https://doi.org/10.1007/BF02908579

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian and Byelorussian Foundations for Basic Research (project T18R-249).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. D. Parfimovich.

Ethics declarations

The authors declare that there is no conflicts of interest.

Additional information

Translated by A. Chikishev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komarov, F.F., Parfimovich, I.D., Tkachev, A.G. et al. Effect of Methods for Fabrication of Polymer Composites with Carbon Nanotubes on Conduction Processes. Tech. Phys. 66, 461–469 (2021). https://doi.org/10.1134/S1063784221030129

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784221030129

Navigation