Skip to main content
Log in

Changes in the Distribution of Broadleaf Tree Species in the Central Part of the Southern Urals since the 1970s

  • Published:
Russian Journal of Ecology Aims and scope Submit manuscript

Abstract

Changes in the distribution of broadleaf tree species—Tilia cordata Mill., Quercus robur L., Acer platanoides L., and Ulmus glabra Huds.—in the central part of the Southern Urals after the cessation of the period with extremely cold winters in the late 1970s have been analyzed using thematic maps of their distribution in the study region, which were created in the 1970s and early 21th century based on cartographic forest inventory materials. Abnormal winter temperatures had the greatest effect on the distribution of A. platanoides and U. glabra. All broadleaf species are currently expanding their range, with their distribution boundary shifting eastward, to the left bank of the Belaya River.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Gorchakovskii, P.L., Basic problems in the historical phytogeography of the Urals, Tr. Inst. Ekol. Rast. Zhiv. Ural. Fil. Akad, Nauk SSSR, Vol. 66, Sverdlovsk, 1969.

  2. Gorchakovskii, P.L., Shirokolistvennye lesa i ikh mesto v rastitel’nom pokrove Yuzhnogo Urala (Broadleaf Forests and Their Place in the Vegetation of the Southern Urals), Moscow: Nauka, 1972.

  3. Popov, G.V., Lesa Bashkirii (Forest of Bashkortostan), Ufa: Bashkir. Knozhn. Izd., 1980.

  4. Martynenko, V.B., Mirkin, B.M., and Muldashev, A.A., Syntaxonomy of Southern Urals forests as a basis for the system of their protection, Russ. J. Ecol., 2008, vol. 39, no. 7, pp. 459–465.

    Article  Google Scholar 

  5. Mirkin B.M., Martynenko V.B., Shirokikh P.S., and Naumova L.G. Analysis of factors determining the species richness of forest communities in the Southern Urals, Zh. Obshch. Biol., 2010, vol. 71, no. 2, pp. 131–143.

    CAS  PubMed  Google Scholar 

  6. Osobo okhranyaemye prirodnye territorii Rossii: sovremennoe sostoyanie i perspektivy razvitiya (Specially Protected Natural Areas of Russia: Current State and Prospects for Development), Krever, V.G., Stishov, M.S., and Onufrenya, I.A., Eds., Moscow: WWF Rossii, 2009.

    Google Scholar 

  7. Gorchakovskii, P.L., Rasteniya evropeiskikh shirokolistvennykh lesov na vostochnom predele ikh areala (Plants of European Broadleaf Forests at the Northern Boundary of Their Range), Sverdlovsk, 1968.

  8. Evaluation Report on Climate Changes and Their Consequences in the Territory of the Russian Federation. http://climate2008.igce.ru/v2008/htm/index00.htm.

  9. Shiyatov, S.G., Terent’ev, M.M., and Fomin, V.V., Spatiotemporal dynamics of forest–tundra communities in the Polar Urals, Russ. J. Ecol., 2005, vol. 36, no. 2, pp. 69–75.

    Article  Google Scholar 

  10. Shiyatov, S.G., Dinamika drevesnoi i kustarnikovoi rastitel’nosti v gorakh Polyarnogo Urala pod vliyaniem sovremennykh izmenenii klimata (Dynamics of Tree and Shrub Vegetation in the Polar Ural Mountains under the Effect of Current Climate Change), Yekaterinburg: Ural. Otd. Ross. Akad. Nauk, 2009.

  11. Elsakov, V.V. and Marushchak, I.O., Spectrozonal satellite images in revealing trends of climate-induced changes in forest phytocenoses on the western slopes of the Subpolar Urals, Komp’yut. Optika, 2011, vol. 35, no. 2, pp. 281–286.

    Google Scholar 

  12. Im, S.T. and Kharuk, V.I., Climate-induced changes in the alpine tundra ecotone on the Putorana Plateau, Issled. Zemli iz Kosmosa, 2013, no. 5, p. 32.

  13. Elsakov, V.V., Shchanov, V.M., Biryukova, V.S., et al., Changes of piedmont forests in the Shchugor River basin according to the results of satellite imaging in 1986 to 2016, in Lesnye ekosistemy v usloviyakh izmeneniya klimata: biologicheskaya produktivnost' i distantsionnyi monitoring (Forest Ecosystems inder Climate Change: Biological Productivity and Remote-Sensing Monitoring), Ioshkar-Ola, 2016, pp. 51–57.

  14. Moiseev, P.A., Shiyatov, S.G., and Grigor’ev, A.A., Klimatogennaya dinamika drevesnoi rastitel’nosti na verkhnem predele ee rasprostraneniya na khrebte Bol’shoi Taganai za poslednee stoletie (Climatogenic Dynamics of Tree Vegetation at the Upper Treeline on the Bol’shoi Taganai Range over the Past Century), Yekaterinburg: Ural. Otd. Ross. Akad. Nauk, 2016. 136 s.

  15. Moiseev P.A., Gaisin I.K., Bubnov M.O., and Moiseeva O.O., Dynamics of tree vegetation in steppificated areas on the slopes of the Southern Kraka massif during the past 80 years, Russ. J. Ecol., 2018, vol. 49, no. 2, pp. 190–196. https://doi.org/10.1134/S1067413618020108

    Article  Google Scholar 

  16. Davydychev, A.N., Gorichev, Yu.P., Kulagin, A.Yu., and Suleimanov, R.R., Regeneration processes under the canopy of broadleaf–dark conifer forests of the Southern Urals, Lesovedenie. 2011, no. 2, pp. 51–61.

  17. Forest Plan of the Republic of Bashkortostan. http://docs.cntd.ru/document/935110326. Cited June 30, 2020.

  18. Zhigunova, S.N., Fedorov, N.I., and Mikhailenko, O.I., Progressive successions in clear-cut areas of pine–irch forests in the central Southern Urals, Nauch. Ved. Belgorod. Gos. Univ., Ser. Estestv. Nauki, 2013, no. 3 (146), pp. 30–35.

  19. Gainanov, S.G., Protection and reproduction of elm family species in the Southern Urals, Vestn. Bashkir. Gos. Agrarn. Univ., 2013, no. 4, pp. 114–117.

  20. Khotinskii, N.A., Radiocarbon chronology and correlation of natural and anthropogenic boundaries of the Holocene, in Novye dannye po geokhronologii chetvertichnogo perioda (New Data on Quaternary Geochronology), Punning, Ya., Ivanov, I.K., Kind, N.V., and Chichagov, O.A., Eds., Moscow: Nauka, 1987, pp. 39–45.

  21. Novenko, E., Tsyganov, A., Volkova, E., et al., The Holocene palaeoenvironmental history of Central European Russia reconstructed from pollen, plant macrofossil and testate amoeba analyses of the Klukva peatland, Tula region, Quat. Res., 2015, vol. 83, pp. 459–468.

    Article  Google Scholar 

  22. Martynenko, V.B., Shirokikh, P.S., and Mirkin, B.M., Syntaxonomy of primary forests of the Southern Ural region and Their Moutain Anaogs, in Raznoobrazie i dinamika lesnykh ekosistem Rossii (Diversity and Dynamics of Russian Forest Ecosystems), Moscow, 2013, pp. 67–129.

    Google Scholar 

  23. Sergeev, L.I., Winter hardiness of forest-forming species and forest regeneration in Bashkortostan, in Okhrana, ratsional’noe ispol’zovanie i vosproizvodstvo lesnykh resursov Bashkirii: Tez. dokl. nauch.-prakt. konf. (Protection, Rational Management, and Regeneration of Forest Resources in Bashkortostan: Abstr. Sci.-Pract. Conf.), Ufa, 1974, pp. 30–34.

  24. Kucherov, S.E. and Kucherova, S.V., Oak die-off at the southeastern boundary of its range under the impact of damaging factors, Izv. Samarsk. Nauch. Tsentra Ross. Akad. Nauk, 2013, vol. 15, nos. 3–4, pp. 1341–1343.

    Google Scholar 

  25. Gagen, M., Matthews, N., Denman, S., et al., The tree ring growth histories of UK native oaks as a tool for investigating chronic oak decline: An example from the Forest of Dean, Dendrochronologia, 2019, vol. 55, pp. 50–59.

    Article  Google Scholar 

  26. Ma, W., Liang, J., Cumming, J.R., et al., Fundamental shifts of central hardwood forests under climate change, Ecol. Model., 2016, vol. 332, pp. 28–41.

    Article  Google Scholar 

  27. Tomlinson, I. and Potter, C., “Too little, too late”? Science, policy and Dutch elm disease in the UK, J. Hist. Geogr., 2010, vol. 36, pp. 121–131. https://doi.org/10.1016/j.jhg.2009.07.003

    Article  Google Scholar 

  28. Fisher, M.C., Henk, D.A., Briggs, C.J., et al., Emerging fungal threats to animal, plant and ecosystem health, Nature, 2012, vol. 48, pp. 186–194.

    Article  Google Scholar 

  29. Nitschke, C.R., Nichols, S., Allen, K., et al., The influence of climate and drought on urban tree growth in southeast Australia and the implications for future growth under climate change, Landsc. Urban Plan., 2017, vol. 167, pp. 275–287. doi.org/https://doi.org/10.1016/j.landurbplan.2017.06.012

    Article  Google Scholar 

  30. Cannell, M.G.R., Spring frost damage on young Picea sitchensis: 1. Occurence of damaging frosts in Scotland compared with western North America, Forestry, 1984, vol. 57, no. 2, pp. 159–175.

    Article  Google Scholar 

  31. Rammig, A., Jönsson, A.M., Hickler, T., et al., Impacts of changing frost regimes on Swedish forests: Incorporating cold hardiness in a regional ecosystem model, Ecol. Model., 2010, vol. 221, pp. 303–313. https://doi.org/10.1016/j.ecolmodel.2009.05.014

    Article  Google Scholar 

  32. Augspurger, C.K., Reconstructing patterns of temperature, phenology, and frost damage over 124 years: Spring damage risk is increasing, Ecology, 2013, vol. 94, pp. 41–50. https://doi.org/10.1890/12-0200.1

    Article  PubMed  Google Scholar 

  33. Muffler, L., Beierkuhnlein, C., Aas, G., et al., Distribution ranges and spring phenology explain late frost sensitivity in 170 woody plants from the northern hemisphere, Global Ecol. Biogeogr., 2016, vol. 25, pp. 1061–1071. https://doi.org/10.1111/geb.12466

    Article  Google Scholar 

  34. Bascietto, M., Bajocco, S., Mazzenga, F., and Matteuccid, G., Assessing spring frost effects on beech forests in central Apennines from remotely-sensed data, Agric. For. Meteorol., 2018, vol. 248, pp. 240–250.

    Article  Google Scholar 

  35. Von Oheimb, G. and Brunet, J., Dalby söderskog revisited: Long-term vegetation changes in a south Swedish deciduous forest, Acta Oecol., 2007, vol. 31, pp. 229–242. https://doi.org/10.1016/j.actao.2006.12.001

    Article  Google Scholar 

  36. Abrams, M.K., Orwig, D.A., and Dockry, M.K., Dendroecology and successional status of two contrasting old-growth oak forests in the Blue Range Mountains, U.S.A., Can. J. For. Res., 1997, vol. 27, pp. 994–1002.

    Article  Google Scholar 

  37. Reif, A. and Gärtner, S.M., Die natürliche Verjüngung der laubabwerfenden Eichen – arten Stieleiche (Quercus robur L.) und Traubeneiche (Quercus petraea Liebl.) – eine Literaturstudie mit besonderer Berücksichtigung der Waldweide, Waldökologie Online, 2007, vol. 5, pp. 79–116.

    Google Scholar 

  38. Putnam, R.C. and Reich, P.B., Climate and competition affect growth and survival of transplanted sugar maple seedlings along a 1,700 km gradient, Ecol. Monogr., 2017, vol. 87, pp. 130–157.

    Article  Google Scholar 

  39. Gao, W.-Q., Liu, J.-F., Xue, Z.-M., et al., Geographical patterns and drivers of growth dynamics of Quercus variabilis, Forest Ecol. Manag., 2018, vol. 429, pp. 256–266.

    Article  Google Scholar 

  40. Evstigneev, O.I., Murashev, I.A., and Korotkov, V.N., Anemochory and tree seed dispersal distances Eastern European forests, Lesovedenie, 2017, no.1, pp. 45–52.

  41. Venturas, M., Nanos, N., and Gil, L., The reproductive ecology of Ulmus laevis Pallas in a transformed habitat, Forest Ecol. Manag., 2014, vol. 312, pp. 170–178.

    Article  Google Scholar 

  42. Woziwoda, B., Krzyżanowska, A., Dyderski, M.K., et al., Propagule pressure, presence of roads, and microsite variability influence dispersal of introduced Quercus rubra in temperate Pinus sylvestris forest, Forest Ecol. Manag., 2018, vol. 428, pp. 35–45. https://doi.org/10.1016/j.foreco.2018.06.033

    Article  Google Scholar 

  43. Grant, M.J., Waller, M.P., and Groves, J.A., The Tiliadecline: Vegetation change in lowland Britain during the mid and late Holocene, Quat. Sci. Rev., 2011, vol. 30, pp. 394–408.

    Article  Google Scholar 

  44. Hart, J.L., Buchanan, M.L., Clark, S.L., and Torreano, S.J., Canopy accession strategies and climate–growth relationships in Acer rubrum, Forest Ecol. Manag., 2012, vol. 282, pp. 124–132. https://doi.org/10.1016/j.foreco.2012.06.033

    Article  Google Scholar 

  45. Korzukhin, M.D. and Tsel’niker, Yu.L., Model analysis of recent ranges of forest tree species in Russia and their variation under possible climate changes, Probl. Ekol. Monit. Model. Ekosist., 2010, vol. 23, pp. 249–268.

    Google Scholar 

  46. Rustad, L., Campbell, J., Dukes, J.S., et al., Changing Climate, Changing Forests: The Impacts of Climate Change on Forests of the Northeastern United States and Eastern Canada, Newtown Square, PA: USDA Forest Service, Northern Research Station, 2012.

    Google Scholar 

  47. Park, H., Jeong, Su-J., Ho, Ch.-H., et al., Nonlinear response of vegetation green-up to local temperature variations in temperate and boreal forests in the northern hemisphere, Remote Sens. Environ., 2015, vol. 165, pp. 100–108.

    Article  Google Scholar 

  48. Wang, X.-Y., Zhao, C.-Y., and Jia, Q.-Y., Impacts of climate change on forest ecosystems in northeast China, Adv. Climate Change Res., 2013, vol. 4, pp. 230–241. https://doi.org/10.3724/SP.J.1248.2013.230

    Article  Google Scholar 

  49. Butenschoen, O. and Scheu, S., Climate change triggers effects of fungal pathogens and insect herbivores on litter decomposition, Acta Oecol., 2014, vol. 60, pp. 49–56.

    Article  Google Scholar 

  50. Brecka, A.F.J., Shahi, C., and Chen, H.Y.H., Climate change impacts on boreal forest timber supply, Forest Policy Econ., 2018, vol. 92, pp. 11–21.

    Article  Google Scholar 

  51. Keppel, G., Van Niel, K.P., Wardell-Johnson, G.W., et al., Refugia: Identifying and understanding safe havens for biodiversity under climate change, Global Ecol. Biogeogr, 2012, vol. 21, pp. 393–404.

    Article  Google Scholar 

  52. Shevchenko, N.E. and Smirnova, O.V., Refugia for the floristic diversity of Northern Ural dark conifer forests as markers of natural vegetation of the eastern European taiga, Russ. J. Ecol., 2017, vol. 48, no. 3, pp. 212–218.

    Article  Google Scholar 

  53. Kołaczek, P., Gałka, M., Apolinarska, K., et al., A multi-proxy view of exceptionally early postglacial development of riparian woodlands with Ulmus in the Dniester River valley, western Ukraine, Rev. Palaeobot. Palynol., 2018, vol. 250, pp. 27–43.

    Article  Google Scholar 

Download references

Funding

This study was performed under State Assignment no. 075-00326-19-00 of the Ministry of Education and Science of Russia (topic no. AAAA-A18-118022190060-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Fedorov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by D. Zabolotny

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorov, N.I., Martynenko, V.B., Zhigunova, S.N. et al. Changes in the Distribution of Broadleaf Tree Species in the Central Part of the Southern Urals since the 1970s. Russ J Ecol 52, 118–125 (2021). https://doi.org/10.1134/S1067413621020053

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1067413621020053

Keywords:

Navigation